DOI QR코드

DOI QR Code

AN EFFICIENT CONSTRUCTION OF SELF-DUAL CODES

  • Kim, Jon-Lark (Department of Mathematics Sogang University) ;
  • Lee, Yoonjin (Department of Mathematics Ewha Womans University)
  • Received : 2014.04.23
  • Published : 2015.05.31

Abstract

Self-dual codes have been actively studied because of their connections with other mathematical areas including t-designs, invariant theory, group theory, lattices, and modular forms. We presented the building-up construction for self-dual codes over GF(q) with $q{\equiv}1$ (mod 4), and over other certain rings (see [19], [20]). Since then, the existence of the building-up construction for the open case over GF(q) with $q=p^r{\equiv}3$ (mod 4) with an odd prime p satisfying $p{\equiv}3$ (mod 4) with r odd has not been solved. In this paper, we answer it positively by presenting the building-up construction explicitly. As examples, we present new optimal self-dual [16, 8, 7] codes over GF(7) and new self-dual codes over GF(7) with the best known parameters [24, 12, 9].

Keywords

References

  1. C. Aguilar Melchor and P. Gaborit, On the classification of extremal [36, 18, 8] binary self-dual codes, IEEE Trans. Inform. Theory, 54 (2008), no. 10, 4743-4750. https://doi.org/10.1109/TIT.2008.928976
  2. C. Aguilar-Melchor, P. Gaborit, J.-L. Kim, L. Sok, and P. Sole, Classification of extremal and s-extremal binary self-dual codes of length 38, IEEE Trans. Inform. Theory 58 (2012), no. 4, 2253-2262. https://doi.org/10.1109/TIT.2011.2177809
  3. R. Alfaro and K. Dhul-Qarnayn, Constructing self-dual codes over $F_q[u]/(u^t)$, Des. Codes Cryptogr. 74 (2015), no. 2, 453-465. https://doi.org/10.1007/s10623-013-9873-9
  4. R. A. Brualdi and V. Pless, Weight enumerators of self-dual codes, IEEE Trans. Inform. Theory 37 (1991), no. 4, 1222-1225. https://doi.org/10.1109/18.86979
  5. J. Cannon and C. Playoust, An Introduction to Magma, University of Sydney, Sydney, Australia, 1994.
  6. S. T. Dougherty, Shadow codes and weight enumerators, IEEE Trans. Inform. Theory 41 (1995), no. 3, 762-768. https://doi.org/10.1109/18.382022
  7. T. A. Gulliver and M. Harada, New optimal self-dual codes over GF(7), Graphs Combin. 15 (1999), no. 2, 175-186. https://doi.org/10.1007/s003730050038
  8. T. A. Gulliver, M. Harada, and H. Miyabayashi, Double circulant and quasi-twisted self-dual codes over $\mathbb{F}_5$ and $\mathbb{F}_7$, Adv. Math. Commun. 1 (2007), no. 2, 223-238. https://doi.org/10.3934/amc.2007.1.223
  9. T. A. Gulliver, J.-L. Kim, and Y. Lee, New MDS or near-MDS self-dual codes, IEEE Trans. Inform. Theory 54 (2008), no. 9, 4354-4360. https://doi.org/10.1109/TIT.2008.928297
  10. S. Han, A method for constructing self-dual codes over $\mathbb{Z}_{2^m}$, Des. Codes Cryptogr. 75 (2015), no. 2, 253-262. https://doi.org/10.1007/s10623-013-9907-3
  11. S. Han, H. Lee, and Y. Lee, Constructions of self-dual codes over $\mathbb{F}_2+u{\mathbb{F}}_2$, Bull. Korean Math. Soc. 49 (2012), no. 1, 135-143. https://doi.org/10.4134/BKMS.2012.49.1.135
  12. M. Harada, The existence of a self-dual [70, 35, 12] code and formally self-dual codes, Finite Fields Appl. 3 (1997), no. 2, 131-139. https://doi.org/10.1006/ffta.1996.0174
  13. M. Harada, personal communication on April 25, 2009.
  14. M. Harada and P. R. J. Ostergard, Self-dual and maximal self-orthogonal codes over $\mathbb{F}_7$, Discrete Math. 256 (2002), no. 1-2, 471-477. https://doi.org/10.1016/S0012-365X(02)00389-8
  15. W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Appl. 11 (2005), no. 3, 451-490. https://doi.org/10.1016/j.ffa.2005.05.012
  16. K. F. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer-Verlag, New York-Berlin, 1982.
  17. J.-L. Kim, New extremal self-dual codes of lengths 36, 38 and 58, IEEE Trans. Inform. Theory 47 (2001), 386-393. https://doi.org/10.1109/18.904540
  18. J.-L. Kim, http://maths.sogang.ac.kr/jlkim/preprints.html.
  19. J.-L. Kim and Y. Lee, Euclidean and Hermitian self-dual MDS codes over large finite fields, J. Combin. Theory Ser. A 105 (2004), no. 1, 79-95. https://doi.org/10.1016/j.jcta.2003.10.003
  20. J.-L. Kim and Y. Lee, Construction of MDS Self-dual codes over Galois rings, Des. Codes Cryptogr. 45 (2007), no. 2, 247-258. https://doi.org/10.1007/s10623-007-9117-y
  21. J.-L. Kim and Y. Lee, Self-dual codes using the building-up construction, IEEE International Symposium on Information Theory, 2400-2402, June 28 - July 3, Seoul, Korea, 2009.
  22. H. Lee and Y. Lee, Construction of self-dual codes over finite rings $\mathbb{Z}_{p^m}$, J. Combin. Theory Ser. A 115 (2008), no. 3, 407-422. https://doi.org/10.1016/j.jcta.2007.07.001
  23. J. S. Leon, V. Pless, and N. J. A. Sloane, On ternary self-dual codes of length 24, IEEE Trans. Inform. Theory 27 (1981), no. 2, 176-180. https://doi.org/10.1109/TIT.1981.1056328
  24. V. Pless, On the classification and enumeration of self-dual codes, J. Combin. Theory Ser. A 18 (1975), no. 3, 313-335. https://doi.org/10.1016/0097-3165(75)90042-4
  25. V. Pless and V. Tonchev, Self-dual codes over GF(7), IEEE Trans. Inform. Theory 33 (1987), no. 5, 723-727. https://doi.org/10.1109/TIT.1987.1057345
  26. E. Rains and N. J. A. Sloane, Self-dual codes, in: V. S. Pless, W. C. Huffman (Eds.), Handbook of Coding Theory, Elsevier, Amsterdam. The Netherlands, 1998.

Cited by

  1. Complementary information set codes over GF(p) vol.81, pp.3, 2016, https://doi.org/10.1007/s10623-015-0174-3
  2. t-CIS codes over GF(p) and orthogonal arrays vol.217, 2017, https://doi.org/10.1016/j.dam.2016.09.032
  3. On the Problem of the Existence of a Square Matrix U Such That UUT=-I over Zpm vol.8, pp.3, 2017, https://doi.org/10.3390/info8030080