DOI QR코드

DOI QR Code

Evaluation of a Ground Heat Exchanger Appropriate for the Site of the Third Stage Construction of Incheon International Airport

인천국제공항 3단계 건설부지에 적합한 지중열교환기 시스템 평가 연구

  • 조남현 (인천국제공항공사 공항연구소) ;
  • 송정태 (인천국제공항공사 공항연구소) ;
  • 윤석 (한국과학기술원 건설환경공학과) ;
  • 이승래 (한국과학기술원 건설환경공학과)
  • Received : 2014.08.11
  • Accepted : 2015.05.21
  • Published : 2015.05.31

Abstract

In the present study, a ground heat exchanger was installed for each heat source in the system at the site to evaluate ground heat conductivity, constructability, and economic feasibility; the factors considered in the study included ground heat, groundwater, fillers (such as bentonite and pea pebbles) and the shape of the heat exchange pipe (e.g., U and D-U). The aim was to determine the ground heat exchanger appropriate for the geothermal system in the 3rd-phase construction of Incheon International Airport. A comparative cost analysis of the initial costs based on the above information showed that although the initial costs of the regular vertical closed loop-II and modified vertical closed loop were lower than those of the regular vertical closed loop-I, they could not be expected to deliver high economic efficiency from the viewpoint of constructability (filler injection, heat exchange pipe insertion). The initial costs proved to be higher in the case of Geohil.

본 연구에서는 인천국제공항 3단계 건설 사업에 포함된 지중열시스템에 대한 적정 지중열교환기 선정을 위해 현장 부지내 시스템의 열원(지중열원, 지하수), 채움재(벤토나이트, 콩자갈), 열교환 파이프 형태(U, D-U)별로 지중열교환기를 설치하여 지중열전도도, 시공성, 경제성을 평가하였다. 이를 위해 벤토나이트 그라우트에 single U형의 열교환파이프가 삽입된 일반수직밀폐형-I, 열교환 파이프의 접촉면적을 늘려 열교환율을 높이기 위해 single U형 열교환파이프를 두 개 삽입한 Double U형 일반수직밀폐형-II, 일반수직밀폐형-I의 채움재를 벤토나이트 대신 콩자갈로 적용한 개량수직밀폐형 및 SCW(standing column well)에 채움재를 넣은 함몰방지개방형(geohil)을 시험시공하였다. 초기비용에 대한 비용 비교분석결과 일반수직밀폐형-I 대비 개량수직밀폐형, 일반수직밀폐형-II의 경우 초기비용이 절감되었지만 시공성(채움재 주입, 열교환 파이프 삽입) 및 시공일수를 고려할 때 높은 경제성을 기대하기 어려우리라 판단된다. 또한 Geohil의 경우 초기 비용이 더 늘어났다.

Keywords

References

  1. Allan, M.L. and Philippacopoulos, A.J. (1999), "Ground Water Protection Issues with Geothermal Heat Pumps", Geothermal Resources Council Meeting, Reno, NV, p.9.
  2. Chang, C. S. (2013), "Geothermal System Construction Practices of New Building for Korea Gas Corporation Headquarters - Using the Modified Vertical Closed Loop Method (Special Manuscript)", Journal of the KARSE (Korean Association of Air Conditioning, Refrigeration, and Sanitary Engineers), Vol.30, No.05, pp.54-58
  3. Cho, N. H., Seo, B. S., Song, J. K., and Lee, S. R. (2013), "Evaluation of Swelling Behavior of Bentonite for Vertical Ground Heat Exchanger", KGS Spring National Conference, Daegu (Korea), pp.1391-1397
  4. Cho, J. S. (2006), Study on Grouting Materials for Improving Ground Heat Exchanger Performance. Ministry of Trade, Industry & Energy (Korea), Final Report 2004-N-GE08-P-01.
  5. Choi, H. S., Lee, C. H., Choi, H. Y., and Woo, S. B. (2008), "A Study on the Physical Characteristics of Grout Material for Backfilling Ground Heat Exchanger", Journal of Korean Geotechnical Society, Vol.24, No.1, pp.37-49.
  6. Lee, J.Y. (2009), "Current Status of Ground Source Heat Pumps in Korea", Renewable & Sustainable Energy Review. Vol.13, Issues 6-7, pp.1560-1568 https://doi.org/10.1016/j.rser.2008.10.005
  7. Lee, C., Park, M., Min, S., Choi, H., and Sohn, B. (2010), "Evaluation of Performance of Grouts and Pipe Sections for Closed-loop Vertical Ground Heat Exchanger by in-situ Thermal Response Ttest", Journal of Korean Geotechnical Society, Vol.26, No.7, pp.93-106.
  8. Jo, Y. J., Lee, J. Y., Lim, S. Y., and Hong, G. P. (2009), "A Review on Potential Effects of Installation and Operation of Ground Source Heat Pumps on Soil and Groundwater Environment", Journal of Soil & Groundwater Env., Vol.14(3), pp.22-31.
  9. Kim, J. Y., Lee, E. J., Chang, K. C., and Kang, E. C. (2008), "A Study on the Measurement of Thermal conductivity of Vertical Borehole heat Exchanger", Proceedings of the SAREK 2008 Winter Annual Conference, Korea, pp.39-34.
  10. Park, M. S., Wi, J. H., Lee, C. H., Choi, H. S., and Kang, S. H. (2010), "Study on Cement-based Grout for Closed-loop Vertical Grout Heat Exchanger", Journal of the korean geotechnical society, Vol.26, No.7, pp.107-115.
  11. Rafferty, K.D. (2001), "Design Aspects of Commercial Open-loop Heat Pump Systems", GHC Bulletin, Vol.22, pp.16-24.
  12. Seo, U. J. (2011), "Thermal Response Experimental Results of SCW and Geogil and High Efficiency Deep Borehole Ground Heat Exchangers", Korea Society of Geothermal Energy Engineers, Vol. 7(1), pp.24-29
  13. Sohn, B., Wi, J., Park, S., Lim, J., and Choi, H. (2013), "Evaluation of Conventional Prediction Models for Soil Thermal Conductivity to Design Horizontal Ground Heat Exchangers", Journal of the Korean Geotechnical Society,, Vol.29, No.2, pp.5-14. https://doi.org/10.7843/kgs.2013.29.2.5
  14. Yoon, S., Go, G. H., Lee, S. R., and Cho, N. H. (2013), "Evaluation of Heat Exchange Rate of Different Types of Ground Heat Exchangers", Journal of the Korean Society of Civil Engineers, Vol.33, No.6, pp.2393-2400. https://doi.org/10.12652/Ksce.2013.33.6.2393