DOI QR코드

DOI QR Code

Steam Reforming of Ethylene Glycol over Ni/Al2O3 Catalysts: Effect of the Preparation Method and Reduction Temperature

Ni/Al2O3 촉매를 사용한 에틸렌글리콜의 수증기 개질 반응: 촉매 제조 방법과 환원온도의 영향

  • Choi, Dong Hyuck (Department of Chemical Engineering and Department of Energy Systems Research, Ajou University) ;
  • Park, Jung Eun (Department of Chemical Engineering and Department of Energy Systems Research, Ajou University) ;
  • Park, Eun Duck (Department of Chemical Engineering and Department of Energy Systems Research, Ajou University)
  • 최동혁 (아주대학교 에너지시스템학과, 화학공학과) ;
  • 박정은 (아주대학교 에너지시스템학과, 화학공학과) ;
  • 박은덕 (아주대학교 에너지시스템학과, 화학공학과)
  • Received : 2014.07.31
  • Accepted : 2014.08.31
  • Published : 2015.06.01

Abstract

The effect of preparation method on the catalytic activities of the $Ni/Al_2O_3$ catalysts on steam reforming of ethylene glycol was investigated. The catalysts were prepared with various preparation methods such as an incipient wetness impregnation, wet impregnation, and coprecipitation method. In the case of coprecipitation method, various precipitants such as KOH, $K_2CO_3$, and $NH_4OH$ were compared. The prepared catalysts were characterized by using $N_2$ physisorption, inductively coupled plasma-atomic emission spectroscopy, X-ray diffraction, temperatureprogrammed reduction, pulsed $H_2$ chemisorption, temperature-programmed oxidation, scanning electron microscopy, and thermogravimetric analysis. Among the catalysts reduced at 773 K, the $Ni/Al_2O_3$ catalyst prepared by a coprecipitation with KOH or $K_2CO_3$ as precipitants showed the best catalytic performance. The preparation method affected the particle size of Ni, reducibility of nickel oxides, catalytic performance (activity and stability), and types of coke formed during the reaction. The $Ni/Al_2O_3$ catalyst prepared by a coprecipitation with KOH showed the increasing catalytic activity with an increase in the reduction temperature from 773 to 1173 K because of an increase in the reduction degree of Ni oxide species even though the particle size of Ni increased with increasing reduction temperature.

본 연구에서는 $Ni/Al_2O_3$ 촉매를 사용한 에틸렌글리콜의 수증기 개질반응에서 제조 방법에 따른 영향을 알아보았다. 촉매들은 건식 함침법, 습식 함침법 그리고 공침법을 사용하여 제조하였다. 공침법을 사용하여 촉매 제조시 침전제를 KOH, $K_2CO_3$, $NH_4OH$를 각각 사용하여 침전제에 따른 영향 또한 알아보았다. 제조한 촉매들은 질소 물리흡착, 유도결합 플라즈마 질량분석법(ICP-AES), X선 회절법(XRD), 수소 승온 환원법(TPR), 수소 화학흡착, 승온 산화법(TPO), 주사전자현미경(SEM), 열분석법(TGA)을 사용하여 촉매의 물리화학적인 특성을 분석하였다. 773 K에서 환원한 촉매의 경우 KOH 혹은 $K_2CO_3$를 침전제로 사용하여 공침법으로 제조한 촉매가 가장 높은 활성을 보였다. 촉매 제조 방법은 Ni의 입자크기, Ni 산화물의 환원도, 반응에서의 활성과 안정성, 반응 중 탄소 침적의 형태 등에 영향을 끼치는 것을 확인할 수 있었다. KOH를 침전제로 사용하여 공침법으로 제조한 촉매의 경우 환원온도를 773~1173 K까지 증가시켰을 때, Ni 입자크기의 증가에도 불구하고 Ni 산화물의 환원도가 증가하므로 반응활성이 증가하는 것으로 나타났다.

Keywords

References

  1. Vagia, E. C. and Lemonidou, A. A., "Thermodynamic Analysis of Hydrogen Production Via Autothermal Steam Reforming of Selected Components of Aqueous Bio-oil Fraction," Int. J. Hydrog. Energy, 33, 2489-2500(2008). https://doi.org/10.1016/j.ijhydene.2008.02.057
  2. Ji, N., Zhang, T., Zheng, M., Wang, A., Wang, H., Wang, X. and Chen, J. G., "Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts," Angew. Chem-Int. Edit., 47, 8510-8513(2008). https://doi.org/10.1002/anie.200803233
  3. You, S. J., Baek, I. G. and Park, E. D., "Direct Conversion of Cellulose Into Polyols over Pt Catalysts Supported on Zeolites," Korean Chem. Eng. Res., 50, 435-441(2012). https://doi.org/10.9713/kcer.2012.50.3.435
  4. You, S. J., Baek, I. G., Kim, Y. T., Jeong, K.-E., Chae, H.-J., Kim, T.-W., Kim, C.-U., Jeong, S.-Y., Kim, T. J., Chung, Y.-M., Oh, S.-H. and Park, E. D., "Direct Conversion of Cellulose into Polyols or $H_2$ over Pt/Na(H)-ZSM-5," Korean J. Chem. Eng., 28, 744-750(2011). https://doi.org/10.1007/s11814-011-0019-3
  5. Yue, H., Zhao, Y., Ma, X. and Gong, J., "Ethylene Glycol: Properties, Synthesis, and Applications," Chem. Soc. Rev., 41, 4218-4244(2012). https://doi.org/10.1039/c2cs15359a
  6. Davda, R. R., Shabaker, J. W., Huber, G. W., Cortright, R. D. and Dumesic, J. A., "Aqueous-phase Reforming of Ethylene Glycol on Silica-supported Metal Catalysts," Appl. Catal. B: Environ., 43, 13-26(2003). https://doi.org/10.1016/S0926-3373(02)00277-1
  7. Shabaker, J. W., Davda, R. R., Huber, G. W., Cortright, R. D. and Dumesic, J. A., "Aqueous-phase Reforming of Methanol and Ethylene Glycol over Alumina-supported Platinum Catalysts," J. Catal., 215, 344-352(2003). https://doi.org/10.1016/S0021-9517(03)00032-0
  8. Huber, G. W., Shabaker, J. W., Evans, S. T. and Dumesic, J. A., "Aqueous-phase Reforming of Ethylene Glycol over Supported Pt and Pd Bimetallic Catalysts," Appl. Catal. B:Environ., 62, 226-235(2006). https://doi.org/10.1016/j.apcatb.2005.07.010
  9. Wang, N., Perret, N. and Foster, A., "Sustainable Hydrogen Production for Fuel Cells by Steam Reforming of Ethylene Glycol: A Consideration of Reaction Thermodynamics," Int. J. Hydrog. Energy, 36, 5932-5940(2011). https://doi.org/10.1016/j.ijhydene.2011.01.140
  10. Vlieger, D. J. M., Chakinala, A. G., Lefferts, L., Kersten, S. R. A., Seshan, K. and Brilman, D. W. F., "Hydrogen from Ethylene Glycol by Supercritical Water Reforming Using Noble and Base Metal Catalysts," Appl. Catal. B:Environ., 111-112, 536-544(2012). https://doi.org/10.1016/j.apcatb.2011.11.005
  11. Jung, Y. S., Yoon, W. L., Rhee, Y. W. and Seo, Y. S., "The Surfactant-assisted Ni-$Al_2O_3$ Catalyst Prepared by a Homogeneous Precipitation Method for $CH_4$ Steam Reforming," Int. J. Hydrog. Energy, 37, 9340-9350(2012). https://doi.org/10.1016/j.ijhydene.2012.03.017
  12. Marino, F., Boveri, M., Baronetti, G. and Laborde, M., "Hydrogen Production from Steam Reforming of Bioethanol Using Cu/Ni/ K/g-$Al_2O_3$ Catalysts Effect Ni," Int. J. Hydrog. Energy, 26, 665-668(2001). https://doi.org/10.1016/S0360-3199(01)00002-7
  13. Basagiannis, A. C. and Verykios, X. E., "Reforming Reactions of Acetic Acid on Nickel Catalysts over a Wide Temperature Range," Appl. Catal. A: Gen., 308, 182-193(2006). https://doi.org/10.1016/j.apcata.2006.04.024
  14. Biswas, P. and Kunzru, D., "Steam Reforming of Ethanol for Production of Hydrogen over Ni/$CeO_2$-$ZrO_2$ Catalysts: Effect of Support and Metal Loading," Int. J. Hydrog. Energy, 32, 969-980(2007). https://doi.org/10.1016/j.ijhydene.2006.09.031
  15. Zhang, L., Liu, J., Li. W., Guo, C. and Zhang, J., "Ethanol Steam Reforming over Ni-Cu/$Al_2O_3$ -$M_yO_z$ (M=Si, La, Mg, and Zn) Catalysts," J. Nat. Gas Chem., 18, 55-65(2009). https://doi.org/10.1016/S1003-9953(08)60078-X
  16. Haryanto, A., Fernando, S., Murali, N. and Adhikari, S., "Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review," Energy Fuels, 19, 2098-2106(2005). https://doi.org/10.1021/ef0500538
  17. Garbarino, G., Lagazzo, A., Riani, P. and Busca, G., "Steam Reforming of Ethanol-phenol Mixture on Ni/$Al_2O_3$ : Effect of Ni Loading and Sulphur Deactivation," Appl. Catal. B: Environ., 129, 460-472(2013). https://doi.org/10.1016/j.apcatb.2012.09.036
  18. Nichele, V., Signoretto, M., Menegazzo, F., Gallo, A., Santo, V. D., Cruciani, G. and Cerrato, G., "Glycerol Steam Reforming for Hydrogen Production: Design of Ni Supported Catalysts," Appl. Catal. B: Environ., 111-112, 225-232(2012). https://doi.org/10.1016/j.apcatb.2011.10.003
  19. Goyal, N., Pant, K. K. and Gupta, R., "Hydrogen Production by Steam Reforming of Model Bio-oil Using Structured Ni/$Al_2O_3$ Catalysts," Int. J. Hydrog. Energy, 38, 921-933(2013). https://doi.org/10.1016/j.ijhydene.2012.10.080
  20. Piscina, P. R. and Homs, N., "Use of Biofuels to Produce Hydrogen (reformation processes)," Chem. Soc. Rev., 37, 2459-2467(2008). https://doi.org/10.1039/b712181b
  21. Kim, J. H., Suh, D. J., Park, T. J. and Kim, K. L., "Effect of Metal Particle Size on Coking During $CO_2$ Reforming of $CH_4$ over Ni-alumina Aerogel Catalysts," Appl. Catal. A: Gen., 197, 191-200(2000). https://doi.org/10.1016/S0926-860X(99)00487-1
  22. Li, G., Hu, L. and Hill, J., "Comparison of Reducibility and Stability of Alumina-supported Ni Catalysts Prepared by Impregnation and co-precipitation," Appl. Catal. A:Gen., 301, 16-24(2006). https://doi.org/10.1016/j.apcata.2005.11.013
  23. Achouri, I. E., Abatzoglou, N., Fauteux-Lefebvre, C. and Braidy, N., "Diesel Steam Reforming: Comparison of Two Nickel Aluminate Catalysts Prepared by Wet-impregnation and co-precipitation," Catal. Today, 207, 13-20(2013). https://doi.org/10.1016/j.cattod.2012.09.017
  24. Ibrahim, H. H., Kumar, P. and Idem, R., "Reforming of Isooctane over Ni-$Al_2O_3$ Catalysts for Hydrogen Production: Effects of Catalyst Preparation Method and Nickel Loading," Energy Fuels, 21, 570-580(2007). https://doi.org/10.1021/ef060566u
  25. Jung, Y. S., Yoon, W. L., Seo, Y. S. and Rhee, Y. W., "The Effect of Precipitants on Ni-$Al_2O_3$ Catalysts Prepared by a co-precipitation Method for Internal Reforming in Molten Carbonate Fuel Cells," Catal. Commun., 26, 103-111(2012). https://doi.org/10.1016/j.catcom.2012.04.029
  26. Sing, S. K. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J. and Siemieniewska, T., "Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity," Pure Appl. Chem., 57, 603-619(1985).
  27. Mattos, L. V., Jacobs, G., Davis, B. H. and Noronha, F. B., "Production of Hydrogen from Ethanol: Review of Reaction Mechanism and Catalyst Deactivation," Chem. Rev., 112, 4093-4123(2012).
  28. Che, Y. and Ren, J., "Conversion of Methane and Carbon Dioxide into Synthesis Gas over Alumina-supported Nickel Catalysts. Effect of Ni-$Al_2O_3$ Interactions," Catal. Lett., 29, 39-48(1994). https://doi.org/10.1007/BF00814250
  29. Eser, S., Venkataraman, R. and Altin, O., "Utility of Temperature Programmed Oxidation for Characterization of Carbonaceous Deposits from Heated Jet Fuel," Ind. Eng. Chem. Res., 45, 8956-8962(2006). https://doi.org/10.1021/ie060969h
  30. Bimbela, F., Chen, D., Ruiz, J., Garcia, L. and Arauzo, J., "Ni/Al Coprecipitated Catalysts Modified with Magnesium and Copper for the Catalytic Steam Reforming of Model Compounds from Biomass Pyrolysis Liquids" , Appl. Catal. B:Environ., 1-12, 119-120(2012). https://doi.org/10.1016/j.apcatb.2012.02.007
  31. Djaidja, A., Libs, S., Kiennemann, A. and Barama, A., "Characterization and Activity in Dry Reforming of Methane on NiMg/ Al and Ni/MgO Catalysts," Catal. Today, 113, 194-200(2006). https://doi.org/10.1016/j.cattod.2005.11.066
  32. Lisboa, J. S., Santos, D. C. R. M., Passos, F. B. and Noronha, F. B., "Influence of the Addition of Promoters to Steam Reforming Catalysts," Catal. Today, 101, 15-21(2005). https://doi.org/10.1016/j.cattod.2004.12.005
  33. Trimm, D. L., "Catalysts form the Control of Coking During Steam Reforming," Catal. Today, 49, 3-10(1999). https://doi.org/10.1016/S0920-5861(98)00401-5
  34. Tsyganok, A. I., Tsunoda, T., Hamakawa, S., Suzuki, K., Takehira, K. and Hayakawa, T., "Dry Reforming of Methane over Catalysts Derived from Nickel-containing Mg-Al Layered Double Hydroxides," J. Catal., 213, 191-203(2003). https://doi.org/10.1016/S0021-9517(02)00047-7
  35. Koo, K. Y., Roh, H. S., Seo, Y. T., Seo, D. J., Yoon, W. L. and Park, S. B., "Coke study on MgO-promoted Ni/$Al_2O_3$ Catalyst in Combined $H_2O$ and $CO_2$ Reforming of Methane for Gas to Liquid (GTL) Process," Appl. Catal. A:Gen., 340, 183-190(2008). https://doi.org/10.1016/j.apcata.2008.02.009
  36. Vagia, E. C. and Lemonidou, A. A., "Thermodynamic Analysis of Hydrogen Production Via Steam Reforming of Selected Components of Aqueous Bio-oil Fraction," Int. J. Hydrog. Energy, 32, 212-223(2007). https://doi.org/10.1016/j.ijhydene.2006.08.021

Cited by

  1. Steam reforming of ethylene glycol over Ni-based catalysts: the effect of K vol.42, pp.1, 2016, https://doi.org/10.1007/s11164-015-2322-9