참고문헌
- Battista, M. & Clements, D. (1995). Connecting Research to Teaching: Geometry and Proof. Math. Teach (Reston) 88(1), 48-54. ME 1996b.01051
- Burger, W. & Shaughnessy, J. M. (1986). Characterizing the van Hiele levels of development in geometry. J. Res. Math. Educ. 17(1), 31-48. ME 1986e.09027 https://doi.org/10.2307/749317
- Cobb, P. & Gravemeijer, K. (2008). Experimenting to support and understand learning processes. In: A. E. Kelly, R. A. Lesh & J. Y. Baek (Eds.), Handbook of design research methods in education: Innovations in science, technology, engineering, and mathematics learning and teaching (pp. 68-95). New York: Routledge.
- Corbin, J. & Strauss, A. (2008). Basics of qualitative research (3rd ed.). Thousand Oaks, CA: Sage Publication.
- Crowley, M. L. (1987). The van Hiele Model of the Development of Geometric Thought. In: M. Lindquist (Ed), Learning and Teaching Geometry, K-12, 1987 Yearbook of the National Council of Teachers of Mathematics (pp.1-16). Reston, VA: NCTM. ME 1988x.00341
- De Villiers, M. (1991). Pupils' needs for conviction and explanation within the context of geometry. Pythagoras (Pretoria) 26, 18-27. ME 1992d.00245
- De Villiers, M. (2003). Rethinking proof with the Geometer's Sketchpad. Emeryville, CA: Key Curriculum Press. ME 2000d.02607
- De Villiers, M. (2004). Using dynamic geometry to expand mathematics teachers' understanding of proof. Int. J. Math. Educ. Sci. Technol. 35(5), 703-724. ME 2004d.05037 https://doi.org/10.1080/0020739042000232556
- Driscoll, M. (2007). Fostering geometric thinking. Portsmouth, NH: Heinemann.
- Eves, H. (1972). A survey of geometry. Boston, MA: Allyn & Bacon.
- Gawlick, T. (2005). Connecting arguments to actions - dynamic geometry as means for the attainment of higher van Hiele levels. ZDM, Zentralbl. Didakt. Math. 37(5), 361-370. ME 2005f.02677 https://doi.org/10.1007/s11858-005-0024-2
- Goldenberg, E. P. & Cuoco, A. A. (1998). What is Dynamic Geometry? In: R. Lehrer & D. Chazan (Eds.) Designing learning environments for developing understanding of geometry and space (pp. 351-368). Mahwah, NJ: Lawrence Erlbaum Associates. ME 1998f.04240
- Govender, R. & de Villiers, M. (2003). Constructive evaluation of definitions in a dynamic geometry context. J. Korean Soc. Math. Educ. Ser. D 7(1), 41-58. ME 2003d.03244
- Gutierrez, A . (1992). Exploring the links between van Hiele levels and 3-dimensional geometry. Topologie Struct. 18, 31-48. ME 1995a.00083
- Haja, S. (2005). Investigating the problem solving competency of preservice teachers in dynamic geometry environment. In: H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th annual conference of the International Group for the Psychology of Mathematics Education (PME 29, Melbourne, Australia, July 10-15, 2005.), Vol. 3, (pp. 81-87). Melbourne, Australia: University of Melbourne, Dep. of Science and Mathematics Education. ME 2008a.00355
- Hollebrands, K. F. (2007). The role of a dynamic software program for geometry in the strategies high school mathematics students employ. J. Res. Math. Educ. 38(2), 164-192. ME 2007a.00324
- Jackiw, N. (2001). The Geometer's Sketchpad [Software]. Berkley, CA: Key Curriculum Press.
- Laborde, C. & Laborde, J. (2008). The development of a dynamical geometry environment. In: M. K. Heid & G. W. Blume (Eds.), Research on technology and the teaching and learning of mathematics: vol. 2. Cases and perspectives (pp. 31-52). Charlotte, NC: Information Age Publishing (IAP) / Reston, VA: NCTM. ME 2011a.00351
- Lee, M. Y. (2015). The Relationship between Pre-service Teachers' Geometric Reasoning and their van Hiele Levels in a Geometer's Sketchpad Environment. In: O. N. Kwon, Y. H. Choe, H. K. Ko & S. Han (Eds.), The International Perspective on Curriculum and Evaluation of Mathematics - Proceedings of the KSME 2015 International Conference on Mathematics Education held at Seoul National University, Seoul 08826, Korea; November 6-8, 2015 (Vol. 3, pp.299-214). Seoul, Korea: Korean Society of Mathematical Education.
- Mayberry, J. (1981). An investigation of the van Hiele levels of geometric thinking in undergraduate preservice teachers. Dissertation Abstracts International, 42/01A, 2008A.
- Mudaly, V. & de Villiers, M. (2000). Learners' needs for conviction and explanation within the context of dynamic geometry. Pythagoras (Pretoria) 52, 20-23. ME 2001b.0145
- Niess, M. L. (2005). Preparing teachers to teach science and mathematics with technology: Developing a technology pedagogical content knowledge. Teaching and Teacher Education 21(5), 509-523. https://doi.org/10.1016/j.tate.2005.03.006
- Olive, J. (2000). Using Dynamic Geometry Technology: Implications for Teaching, Learning & Research. Paper presented at TIME 2000 An International Conference on Technology in Mathematics Education. Auckland, New Zealand, 11-14.
- Patsiomitou, S.; Barkatsas, A. & Emvalotis, A. (2010). Secondary students' dynamic reinvention of geometric proof through the utilization of linking visual active representations. Journal of Mathematics and Technology 5, 43-56.
- Senk, S. (1989). Van Hiele levels and achievement in writing geometry proofs. J. Res. Math. Educ. 20(3), 309-321. ME 1990b.01262 https://doi.org/10.2307/749519
- Usiskin, Z. (1982). Van Hiele levels and achievement in secondary school geometry (Final report of the Cognitive Development and Achievement in Secondary School Geometry Project). Chicago: University of Chicago, Department of Education.
피인용 문헌
- Examining mathematical technological knowledge of pre-service middle grades teachers withGeometer’s Sketchpadin a geometry course vol.51, pp.2, 2015, https://doi.org/10.1080/0020739x.2019.1650302