DOI QR코드

DOI QR Code

Trajectory Planning for Torque Minimization of Robot Manipulators Using the Lagrange Interpolation Method

라그랑지 보간법을 이용한 로봇 매니퓰레이터의 토크 최소화를 위한 궤적계획

  • Luo, Lu-Ping (Department of Mechanical Engineering, Hanyang University) ;
  • Hwang, Soon-Woong (Department of Mechatronics Engineering, Hanyang University) ;
  • Han, Chang-Soo (Department of Robot Engineering, Hanyang University)
  • 라로평 (한양대학교 기계공학과) ;
  • 황순웅 (한양대학교 메카트로닉스공학과) ;
  • 한창수 (한양대학교 로봇공학과)
  • Received : 2014.02.16
  • Accepted : 2015.04.09
  • Published : 2015.04.30

Abstract

This paper proposes an algorithm using Lagrange interpolation method to realize trajectory planning for torque minimization of robot manipulators. For the algorithm, position constraints of robot manipulators should be given and the stability of robot manipulators should be satisfied. In order to avoid Runge's phenomenon, we set up time interpolation points using Chebyshev interpolation points. After that, we found suitable angle which corresponds to the points and then we got trajectories of joint's angle, velocity, acceleration using Lagrange interpolation method. We selected performance index for torque consumption optimization of robot manipulator. The method went through repetitive computation process to have minimum value of the performance index by calculated trajectory. Through the process, we could get optimized trajectory to minimize torque and performance index and guarantee safety of the motion for manipulator performance.

본 논문에서는 로봇 매니퓰레이터의 토크 최소화를 위한 궤적계획을 위해 라그랑지 보간법을 이용한 Algorithm을 제안하였다. 이를 위해 로봇 매니퓰레이터의 위치에 대한 구속조건이 주어지고 안정성이 보장되어야 한다. 라그랑지 보간법의 Runge's 현상을 회피하기 위해 Chebyshev 보간점을 이용하여 시간 보간점을 설정하였고, 이에 대응하는 최적각도를 찾아내어 라그랑지 보간법을 이용한 매끄러운 관절의 각도, 속도, 가속도 궤적을 얻을 수 있다. 로봇 매니퓰레이터의 토크 소비 최적화를 위한 성능지표를 선정하였으며, 계산된 궤적을 통해 이 성능지표가 최소값을 가지도록 반복 계산하는 과정을 거친다. 이를 통해, 토크와 성능지표를 최소화 시키는 최적의 궤적을 얻을 수 있으며, 로봇 매니퓰레이터가 작업을 수행하기 위한 움직임의 안전성을 보장한다.

Keywords

References

  1. M. Pettersson, "Design Optimization in Industrial Robotics Methods and Algorithms for Drive Train Design," Department of Management and Engineering Division of Machine Design, PhD, Linkoping University, 2008.
  2. S. Alavandar and M. J. Nigam, "Neuro-fuzzy based approach for inverse kinematics solution of industrial robot manipulators,"International Journal of Computers, Communications and Contorl, vol. 3, no. 3, pp. 224-234, 2008. https://doi.org/10.15837/ijccc.2008.3.2391
  3. M. B. Ghalia and A. T. Alouani, "A robust trajectory tracking control of industrial robot manipulators using fuzzy logic," Proc. of the 27th Southeastern Symposium on System Theory, pp. 268-271, 1995. DOI: http://dx.doi.org/10.1109/SSST.1995.390571
  4. G. A. Cosner and M. Tomizuka, "Plug in repetitive control for industrial robotic manipulators," Proc. of IEEE International Conference on Robotics and Automation, pp. 1970-1975, 1995. DOI: http://dx.doi.org/10.1109/ROBOT.1990.126295
  5. S. R. Munasinghe, M. Nakamura, S. Goto and N. Kyura "Trajectory Planning for Industrial Robot Manipulators Considering Assigned Velocity and Allowance Under Joint Acceleration Limit," International Journal of Control, Automation, and Systems, vol.1, no.1, pp. 68-75, 2003.
  6. Q. Zhang, S. R. Li and X. S. Gao, "Practial smooth minimum time trajectory planning for path following robotic manipulators," Proceedings of the American Control Conference, Washington, DC, USA, June 2013.
  7. D. Constantinescu and E. A. Croft, "Smooth and time-optimal trajectory planning for industrial manipulators along specified paths,"Journal of Robotic Systems, vol. 17, no. 5, pp. 233-249, 2000. DOI:.http://dx.doi.org/10.1002/(SICI)1097-4563 (200005)17:5<233::AID-ROB1>3.0.CO;2-Y
  8. S. F. P. Saramago and J. V. Steffen, "Optimization of the trajectory planning of robot manipulators tacking into account the dynamics of the system," Mechanism and Machine Theory, vol. 33, no. 7, pp. 883-894, 1998. DOI: http://dx.doi.org/10.1016/S0094-114X(97)00110-9
  9. S. F. P. Saramago and J. V. Steffen JV, "Optimal trajectory planning of robot manipulators in the presence of moving obstacles," Mechanism and Machine Theory, vol. 35, no. 8, 1079-1094, 2000. DOI: http://dx.doi.org/10.1016/S0094-114X(99)00062-2
  10. A. Sato, O. Sato, N. Takahashi and M. Kono, "Trajectory for saving energy of a direct-drive manipulator in throwing motion," Artificial Life and Robotics, vol. 11, no. 1, pp. 61-66, 2007. DOI: http://dx.doi.org/10.1007/s10015-006-0401-0
  11. T. Izumi, Y. Yokose and R. Tamai, "Minimum energy path search for a manipulator in consideration of all nonlinear characteristics by GA and its experiments,"Electrical Engineering in Japan, vol. 157, no. 3, pp. 26-34, 2006. DOI: http://dx.doi.org/10.1002/eej.20437
  12. A. Gasparetto, V. Zanotto, "A new method for smooth trajectory planning of robot manipulators," Mechanism and Machine Theory, vol. 42, no. 4, pp. 455-471, 2007. DOI: http://dx.doi.org/10.1016/j.mechmachtheory.2006.04.002
  13. D. P. Garg and M. Kumar, "Optimization techniques applied to multiple manipulators for path planning and torque minimization," Engineering Applications of Artificial Intelligence, vol. 15, no. 3-4, pp. 241-252, 2002. DOI: http://dx.doi.org/10.1016/S0952-1976(02)00067-2