DOI QR코드

DOI QR Code

Efficient Kinect Sensor-Based Reactive Path Planning Method for Autonomous Mobile Robots in Dynamic Environments

키넥트 센서를 이용한 동적 환경에서의 효율적인 이동로봇 반응경로계획 기법

  • Tuvshinjargal, Doopalam (Smart Autonomous System Lab, School of Mechanical & Automotive Engineering, Kunsan Nat'l Univ.) ;
  • Lee, Deok Jin (Smart Autonomous System Lab, School of Mechanical & Automotive Engineering, Kunsan Nat'l Univ.)
  • 두팔람 툽신자갈 (군산대학교 기계자동차공학부 스마트자율시스템연구실) ;
  • 이덕진 (군산대학교 기계자동차공학부 스마트자율시스템연구실)
  • Received : 2014.08.20
  • Accepted : 2015.04.08
  • Published : 2015.06.01

Abstract

In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments.

본 논문에서는 동적 움직임을 갖는 장애물이 위치한 주행환경에서 이동로봇의 충돌회피 기능을 포함하는 효율적인 반응경로계획 기법을 제안하고자 한다. 로봇의 동적 장애물과의 충돌회피 기능을 위해서 반응경로계획기법을 기반으로 키넥트센서를 이용한 센서융합기법의 보완을 통해서 자율주행의 강건성을 증대시키고자 하였다. 반응경로기법에서 사용된 접근방식은 동적장애물을 가상좌표평면에서 지역관측기개념을 이용하여 정적장애물로 좌표변환을 가능하게하며, 생성된 가상평면에서의 로봇과 장애물의 충돌 발생 가능한 속도와 경로의 운동학적 정보추출이 가능하게 된다. 또한 키넥트 센서 정보를 융합하여 장애물의 방향과 위치 정보를 추정하여 동적 환경에서의 주행성능의 정미도를 증대시키고자 하였다. 본 연구에서 제안 기술의 성능을 검증하기 위해서 임베디드 로봇플랫폼과 여러 개의 동적 장애물을 이용하여 시뮬레이션 해석 및 실험을 수행하였다.

Keywords

References

  1. Litman, T., 2014, "Autonomous Vehicle Implementation Predictions: Implications for Transport Planning," Traffic Technology International, Victoria, Canada, pp. 36-42.
  2. Siegwart, R., Nourbakhsh. I. R. and Scaramuzza, D., 2011, "Introduction to Autonomous Mobile Robots," 2nd Ed., The MIT Press, London, England.
  3. van den Berg, J. P. and Overmars, M. H., 2005, "Roadmap-based Motion Planning in Dynamic Environments," IEEE Trans. Robot., Vol. 21, No. 5, pp. 885-897. https://doi.org/10.1109/TRO.2005.851378
  4. Hsu, D., Kindel, R., Latombe, J.-C. and Rock, S., 2002, "Randomized Kinodynamic Motion Planning with Moving Obstacles," Int. J. Robot. Res., Vol. 21, No. 3, pp. 233-255. https://doi.org/10.1177/027836402320556421
  5. Ge, S. S. and Cui, S. S., 2002, "Dynamic Motion Planning for Mobile Robots Using Potential Field Method," Autonomous. Robots, Vol. 13, No. 3, pp. 207-233. https://doi.org/10.1023/A:1020564024509
  6. Valavanis, K. P., Hebert, T., Kolluru, R. and Tsourveloudis, N., 2000, "Mobile Robot Navigation in 2-d Dynamic Environments Using an Electrostatic Potential Field," IEEE Trans. System, Systems and Humans, Vol. 30, No. 2, pp. 187-196.
  7. Kim, S. K. Lee, H. J. Kim, K. S. Bae, W. M. and Lee D. J., 2015, "Image Tracking Based Lane Departure Warning and Forward Collision Warning Methods for Commercial Automative Vehicle," Transaction on Korean Society of Mechanical Engineers A, Vol. 39, No. 2, pp. 235-240. https://doi.org/10.3795/KSME-A.2015.39.2.235
  8. Stentz, A., 1994, "Optimal and Efficient Path Planning for Partially-known Environments," IEEE Int. Conf. Robotics and Automation, Vol. 4, pp. 3310-3317.
  9. Larsson, J., 2007, "Reactive Navigation of an Autonomous Vehicle in Underground Mines," Orebro University, Sweden.
  10. Seder, M. and Petrovic, I., 2007, "Dynamic Window Based Approach to Mobile Robot Motion Control in the Presence of Moving Obstacles," IEEE Int. Conf. Robotics and Automation, pp. 1986-1992.
  11. Fox, D., Burgard, W. and Thrun, S., 1997, "The Dynamic Window Approach to Collision Avoidance," IEEE Robotics and Automation Magazine, Vol. 4, No. 1, pp. 23-33. https://doi.org/10.1109/100.580977
  12. Minguez, J. and Montano, L., 2004, "Nearness Diagram Navigation: Collision Avoidance in Troublesome Scenarios". IEEE Trans. on Robotics and Automation, Vol. 20, No. 1. pp. 45-59. https://doi.org/10.1109/TRA.2003.820849
  13. Belkhouche, F., 2009, "Reactive Path Planning in a Dynamic Environment," IEEE Transactions On Robotics, Vol. 25, No. 4, pp. 902-911. https://doi.org/10.1109/TRO.2009.2022441
  14. Simmons, R., 1996, "The Curvature-Velocity Method for Local Obstacle Avoidance," IEEE Int. Conf. on Robotics and Automation, Vol. 4, pp. 3375-3382.
  15. Owen, E. and Montano, L., 2005, "Motion Planning in Dynamic Environments Using the Velocity Space," IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2833-2838.
  16. Chakravarthy, A. and Ghose, D., 1998, "Obstacle Avoidance in Dynamic Environment: A Collision Cone Approach," IEEE Trans. on Systems, Man Cybernetics. Part A, System and, Humans, Vol. 28, No. 5, pp. 562-574.
  17. Fiorini, P. and Shiller, Z., 1995, "Robot Motion Planning in Dynamic Environments," International Symposium of Robotic Research, pp. 237-248.
  18. Shiller, Z. Large, F. and Sekhavat, S., 2001, Motion Planning in Dynamic Environments: Obstacles Moving Along Arbitrary Trajectories. IEEE International Conf. on Robotics and Automation, Vol. 4, pages 3716-3721.
  19. Fiorini, P. and Shiller, Z., 1998, "Motion Planning in Dynamic Environments Using Velocity Obstacles," Int. Journal of Roboics Research., Vol. 17, No. 7, pp. 760-772. https://doi.org/10.1177/027836499801700706
  20. Byambaa Dorj, Doopalam Tuvshinjargal, Chong, K. T., Hong, D. P. and Lee, D. J., 2014, "Multi-Sensor Fusion Based Effective Obstacle Avoidance and Path-Following Technology," Advanced Science Letters, Vol. 20, pp.1751-1756. https://doi.org/10.1166/asl.2014.5680
  21. Philippsen, R., Jensen, B. and Siegwart, R., 2007, "Towards Real-time Sensor Based Path Planning in Highly Dynamic Environments," Autonomous Navigation in Dynamic Environments, Vol. 35, Springer, Berlin, Germany, pp. 135-148.
  22. Song, K. -T. and Chang, C., 1999, "Reactive Navigation in Dynamic Environment Using a Multisensor Predictor," IEEE Trans. on System, Man and Cybernetics, Part B, Vol. 29, No. 6, pp. 912-925. https://doi.org/10.1109/3477.809045
  23. Khoshelham, K. and Elberink, S. O., 2012, "Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications," Sensors 2012, pp. 1437-1454.
  24. Han, J., Shao, L., Xu. D. and Shotton, J., 2013, "Enhanced Computer Vision with Microsoft Kinect Sensor: A Review," IEEE Trans. cybernetics, Vol. 43, No. 5, pp. 1318-1334. https://doi.org/10.1109/TCYB.2013.2265378
  25. Microsoft Kinect for X-BXO 360, Available Online: http://www.xbox.com/en-us/kinect/ (accessed on 07 July 2014).
  26. Kronolige, K. and Mihelich, P., Technical Description of Kinect Calibration. http://www.ros.org/wiki/kinect_calibration/technical (accessed on 07 July 2014).
  27. Lego Mindstorms NXT, Available Online: http://www.lego.com/en-us/mindstorms/ (accessed on 07 July 2014).
  28. Choe, T. W. Son, H. S., Song, J. H. and Park, J.H., 2012, Intelligent Robot System HBE-Robocar, HanBack Electronics, Seoul, Korea.
  29. Shashank, Gaurav, Sharma, M. and Shukla, A., 2012, "Robot Navigation Using Image Processing and Isolated Word Recognition," International Journal on Computer Science and Engineering (IJCSE), Vol. 4, No. 5, pp. 769-778.
  30. Chandak, A., Gosavi, K., Giri, S., Agrawal, S. and Kulkarni, P., 2013, "Path Planning for Mobile Robot Navigation Using Image Processing," International Journal of Scientific & Engineering Research, Vol. 4, No. 6, pp. 1490-1495.