DOI QR코드

DOI QR Code

MgF2 나노구조 반사방지막을 통한 함정용 전자광학추적장비 영상추적간섭 최소화

Image Tracking Interference Minimize of Electro Optical Tracking System by MgF2 Nano Structure Antireflective Coating Films

  • 심보현 (국방기술품질원 대구센터 3팀) ;
  • 조희진 (국방기술품질원 분석평가부 기술분석팀)
  • 투고 : 2015.01.08
  • 심사 : 2015.04.21
  • 발행 : 2015.05.25

초록

함정용 전자광학추적장비의 센서부에서 해수면반사파에 의해 발생하게 되는 영상추적간섭 현상을 최소화하고자 전방향성, 점진적인 굴절률 및 표면 요철구조를 갖는 산화아연에 플루오르화마그네슘을 코팅한 반사방지막을 전자빔 증착 장비를 통해 제작하였다. 최적화된 산화아연에 플루오르화마그네슘을 코팅한 반사방지막은 기존의 산화아연 반사방지막과 비교하여 점진적인 굴절률 변화에 따라 표면 프레넬 반사를 최소화하고 이를 통해 전자광학추적장비의 영상추적간섭 현상을 제거하는 장점이 있다. 본 실험을 통해, 산화아연에 플루오르화마그네슘을 코팅한 반사방지막이 다양한 전자광학장비의 반사방지막으로써 적용이 가능함을 확인하였다.

An omni-directional, graded-index and textured ZnO nanorods with $MgF_2$ anti-reflective(AR) coating films for the electro optical tracking system(EOTS) by e-beam evaporation method are presented. we achieved that the graded index structure can minimize image tracking interference of EOTS which is comparable to a general AR coating films. Optimized ZnO nanorods with $MgF_2$ AR coating films lead to decreasing Fresnel reflection by gradient refractive index. According to our experiment results, ZnO nanorods with $MgF_2$ AR coating films can be used for various electro optical system to improve the optical performance.

키워드

참고문헌

  1. Yong-jun Heo, "A Study EOTS Algorithm for Correction Search Radar Error in PKX," Aerospace Research Information Center, Journal and Proceedings, Vol. 14, No. 32, pp. 301-308, October, 2007.
  2. So-hyun Kim, "Design of Autocoast Tracking Algorithm by the Prediction of Target Occlusion and its On-Based Implementation," The Korea Institute of Military Science and Technology, Vol. 12, No. 3, pp. 354-359, June, 2009.
  3. S. Park, S Chun, B. Choi, H. Kim, J. Kim, M. Kang, M. Kim, "Development of HILS for Performance Analysis and Verification of Airborne EOTS for Aircraft," 2012 autumnal conference of The Korean Society for Aeronautical & Space Sciences pp. 375-379, 2012.
  4. Hyung-Jun Koo, Yong Joo Kim, Yoon Hee Lee, Wan In Lee, Kyung kon Kim, andNam-Gyu Park, Nano-embossed hollow spherical TiO2 as bifunctionalmaterial for high-efficiency dye-sensitized solar cells. Adv.Mater. Vol. 20, pp. 195-199, 2008. https://doi.org/10.1002/adma.200700840
  5. Sameer Chhajed, Martin F. Schubert, Jong Kyu Kim, and E. Fred Schubert, Nanostructured multilayer graded-index antireflection coating for Si solar cells with broadband and omnidirectional characteristics, Appl. Phys. Lett. Vol. 93, pp. 251108-251110, 2008. https://doi.org/10.1063/1.3050463
  6. G. J. Lin, K. Y. Lai, C. A. Lin, Y.-L. Lai, and J. H. He, Efficiency enhancement of InGaN-based multiple quantum well solar cells employing antireflective ZnO nanorod arrays, Electron Device Lett. Vol. 32, pp. 1104-1106. 2011. https://doi.org/10.1109/LED.2011.2158061
  7. Yun-Ju Lee, Douglas S. Ruby, David W. Peters, Bonnie B. McKenzie, and Julia W. P. Hsu, ZnO nanostructures as efficient antireflection layers in solar cells, Nano Lett. Vol. 8, pp 1501-1505, 2008. https://doi.org/10.1021/nl080659j
  8. Yen-Chun Chao, Cheng-Ying Chen, Chin-An Lin, Yu-An Dai and Jr-Hau He, Antireflection effect of ZnO nanorod arrays, J. Mater. Chem. Vol. 20, pp 8134-8138, 2010. https://doi.org/10.1039/c0jm00516a
  9. L.Ae, D. Kieven, J. Chen, R. Klenk, Th. Risson, Y. Tang, and M. Ch. Lux-Steiner, ZnO nanorod arrays as an antireflective coating for Cu(In,Ga)Se2 thin film solar cells, Prog. Photovolt: Res. Appl. Vol. 18, pp 209-213, 2010. https://doi.org/10.1002/pip.946