References
- Abrahamson, N.A., Kammerer, A. and Gregor, N. (2003), "Summary of scaling relations for spectral damping, peak velocity, and average spectral acceleration", Report for the PEGA-SOS project, Personal communication.
- Akaike, H. (1974), "A new look at the statistical model identification", IEEE Trans. Automatic Control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100705
- Akiyama, H. (1985), Earthquake resistant limit-state design for buildings, Univ. Tokyo Press, Tokyo.
- Baker, J. (2011), "Conditional mean spectrum: tool for ground-motion selection", J. Struct. Eng., 137(3), 322-331. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000215
- Baker, J. and Cornell, C.A. (2006a), "Correlation of response spectral values for multicomponent ground motions", Bull. Seismol. Soc. Am., 96(1), 215-227. https://doi.org/10.1785/0120050060
- Baker, J. and Cornell, C.A. (2006b), "Spectral shape, epsilon and record selection", Earthq. Eng. Struct. Dyn., 35(9), 1077-1095. https://doi.org/10.1002/eqe.571
- Baker, J. and Jayaram, N. (2008), "Correlation of spectral acceleration values from NGA ground motion models", Earthq. Spectra, 24(1), 299-317. https://doi.org/10.1193/1.2857544
- Benavent-Climent, A., Lopez-Almansa, F. and Bravo-Gonzalez, D.A. (2010), "Design energy input spectra for moderate-to-high seismicity regions based on Colombian earthquakes", Soil Dyn. Earthq. Eng., 30(11), 1129-1148. https://doi.org/10.1016/j.soildyn.2010.04.022
- Bertero, V.V. and Uang, C.M. (1992), Issues and future directions in the use of energy approach for seismic-resistant design of structures, Nonlinear seismic analysis of reinforced concrete buildings, Elsevier, London.
- Bradley, A.B., Cubrinovski, M., MacRae, G.A. and Dhakal, R.P. (2009), "Ground-motion prediction equation for SI based on spectral acceleration equations", Bull. Seismol. Soc. Am., 99(1), 277-285. https://doi.org/10.1785/0120080044
- Chai, R.Y.H. and Fajfar, P.A. (2000), "Procedure for estimating input energy spectra for seismic design", J. Earthq. Eng., 4(4), 539-561. https://doi.org/10.1080/13632460009350382
- Chapman, M.C. (1999), "On the use of elastic input energy for seismic hazard analysis", Earthq. Spectra, 15(4), 607-635. https://doi.org/10.1193/1.1586064
- Cheng, Y., Lucchini, A. and Mollaioli, F. (2014), "Proposal of new ground-motion prediction equations for elastic input energy spectra", Earthq. Struct., 7(4), 485-510. https://doi.org/10.12989/eas.2014.7.4.485
- Chou, C.C. and Uang, C.M. (2000), "Establishing absorbed energy spectra-an attenuation approach", Earthq. Eng. Struct. Dyn., 29(10), 1441-1455. https://doi.org/10.1002/1096-9845(200010)29:10<1441::AID-EQE967>3.0.CO;2-E
- Chou, C.C. and Uang, C.M. (2003), "A procedure for evaluation of seismic energy demand of framed structures", Earthq. Eng. Struct. Dyn., 32(2), 229-244. https://doi.org/10.1002/eqe.221
- Cimellaro, G.P. (2013), "Correlation in spectral acceleration for earthquakes in Europe", Earthq. Eng. Struct. Dyn., 42(4), 623-633. https://doi.org/10.1002/eqe.2248
- Danciu, L. and Tselentis, G.A. (2007), "Engineering ground-motion parameters attenuation relationships for Greece", Bull. Seismol. Soc. Am., 97(1), 162. https://doi.org/10.1785/0120050087
- Decanini, L.D. and Mollaioli, F. (1998), "Toward the definition of the relation between hysteretic and input energy", Proceeding of 6th U.S. National Conference on Earthquake Engineering, EERI, Oakland, California.
- Decanini, L.D. and Mollaioli, F. (2001), "An energy-based methodology for the assessment of seismic demand", Soil Dyn. Earthq. Eng., 21(2), 113-137. https://doi.org/10.1016/S0267-7261(00)00102-0
- Fajfar, P. and Fischinger, M. (1990), "A seismic procedure including energy concept", Proceedings of IX ECEE, Moscow, September.
- Fajfar, P. and Vidic, T. (1994), "Consistent inelastic design spectra: hysteretic and input energy", Earthq. Eng. Struct. Dyn., 23(5), 523-537. https://doi.org/10.1002/eqe.4290230505
- Gong, M.S. and Xie, L.L. (2005), "Study on comparison between absolute and relative input energy spectra and effects of ductility factor", Acta. Seismol. Sinic., 18(6), 717-726. https://doi.org/10.1007/s11589-005-0099-4
- Haselton, C.B., Baker, J.W., Bozorgnia, Y., Goulet, C.A., Kalkan, E., Luco, N., Shantz, T., Shome, N., Stewart, J.P., Tothong, P., Watson-Lamprey, J. and Zareian, F. (2009), "Evaluation of ground motion selection and modification methods: Predicting median interstory drift response of buildings", PEER Report 2009/01 College of Engineering University of California, Berkeley.
- Housner, G.W. (1952), "Spectrum intensities of strong motion earthquakes", Proceedings of Symposium of earthquake and blast effects on structures, EERI, Los Angeles, California.
- Jayaram, N., Mollaioli, F., Bazzurro, P., De Sortis, A. and Bruno, S. (2010), "Prediction of structural response of reinforced concrete frames subjected to earthquake ground motions", 9th U.S. National and 10th Canadian Conference on Earthquake Engineering, Toronto, Canada.
- Krawinkler, H. (1987), "Performance assessment of steel components", Earthq. Spectra, 3(1), 27-41. https://doi.org/10.1193/1.1585417
- Lopez-Almansa, F., Yazgan, A. and Benavent-Climent, A. (2013), "Design energy input spectra for high seismicity regions based on turkish registers", Bull. Earthq. Eng., 11(4), 885-912. https://doi.org/10.1007/s10518-012-9415-2
- Lucchini, A., Mollaioli, F. and Monti, G. (2011), "Intensity measures for response prediction of a torsional building subjected to bi-directional earthquake ground motion", Bull. Earthq. Eng., 9(5), 1499-1518. https://doi.org/10.1007/s10518-011-9258-2
- Luco, N., Manuel, L, Baldava, S. and Bazzurro, P. (2005), "Correlation of damage of steel moment-resisting frames to a vector-valued ground motion parameter set that includes energy demands", Proceedings of the 9th International Conference on Structural Safety and Reliability, ICOSSAR05.
- Manfredi, G. (2001), "Evaluation of seismic energy demand", Earthq. Eng. Struct. Dyn., 30(4), 485-499. https://doi.org/10.1002/eqe.17
- Decanini, L.D. and Mollaioli, F. (2001), "An energy-based methodology for the assessment of seismic demand", Soil Dyn. Earthq. Eng., 21(2), 113-137. https://doi.org/10.1016/S0267-7261(00)00102-0
- McCabe, S.L. and Hall, W.J. (1989), "Assessment of seismic structural damage", J. Struct. Eng., 115(9), 2166-2183. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:9(2166)
- Mollaioli, F., Bruno, S., Decanini, L. and Saragoni, R. (2011), "Correlation between energy and displacment demand for performance-based seismic engineering", Pure Appl. Geophys., 168(2011), 237-259. https://doi.org/10.1007/s00024-010-0118-9
- Yakut, A. and Yilmaz, H. (2008), "Correlation of deformation demands with ground motion intensity", J. Struct. Eng., 134(12), 1818-1828. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:12(1818)
- Mollaioli, F., Lucchini, A., Cheng, Y. and Monti, G. (2013), "Intensity measures for the seismic response prediction of base-isolated buildings", Bull. Earthq. Eng., 11(5), 1841-1866. https://doi.org/10.1007/s10518-013-9431-x
- Neter, J., Kutner, M.H., Nachtsheim, C.J. and Wasserman, W. (1996), Applied linear statistical models, MacGraw-Hill, Boston, Massachusetts, USA.
- Teran-Gilmore, A. (1996), "Performance-based earthquake-resistant design of framed buildings using energy concepts", Ph.D. Dissertation, Department of Civil Engineering, University of California at Berkeley.
- Uang, C.M. and Bertero, V.V. (1990), "Evaluation of seismic energy in structures", Earthq. Eng. Struct. Dyn., 19(1), 77-90. https://doi.org/10.1002/eqe.4290190108
Cited by
- Application of a Monte-Carlo simulation approach for the probabilistic assessment of seismic hazard for geographically distributed portfolio vol.45, pp.4, 2016, https://doi.org/10.1002/eqe.2667
- Hysteresis and Soil Site Dependent Input and Hysteretic Energy Spectra for Far-Source Ground Motions vol.2016, 2016, https://doi.org/10.1155/2016/1548319
- Energy based design of a novel timber-steel building vol.15, pp.4, 2015, https://doi.org/10.12989/eas.2018.15.4.351
- A new practical equivalent linear model for estimating seismic hysteretic energy demand of bilinear systems vol.70, pp.3, 2015, https://doi.org/10.12989/sem.2019.70.3.289
- Ground-motion prediction equations for constant-strength and constant-ductility input energy spectra vol.18, pp.1, 2015, https://doi.org/10.1007/s10518-019-00725-x
- Multivariate Joint Probability Function of Earthquake Ground Motion Prediction Equations Based on Vine Copula Approach vol.2020, pp.None, 2015, https://doi.org/10.1155/2020/1697352
- Efficiency of Intensity Measures Considering Near- and Far-Fault Ground Motion Records vol.11, pp.6, 2015, https://doi.org/10.3390/geosciences11060234
- Characterization of Dissipated Energy Demand vol.147, pp.None, 2021, https://doi.org/10.1016/j.soildyn.2021.106725
- Cumulative Structural Damage Due to Low Cycle Fatigue: An Energy-Based Approximation vol.25, pp.12, 2021, https://doi.org/10.1080/13632469.2019.1692736
- Post-earthquake fast damage assessment using residual displacement and seismic energy: Application to Mexico City vol.37, pp.4, 2015, https://doi.org/10.1177/87552930211021872