DOI QR코드

DOI QR Code

Thermosensitive Chitosan-based Hydrogel with Growth Factor as Adhesion Barrier

성장인자/키토산이 담지된 온도감응성 하이드로젤의 유착방지제로서의 응용

  • Park, Jun-Kyu (Bioalpha Co. Ltd.) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Choi, Changyong (Department of Polymer Science and Engineering, Sunchon National University)
  • 박준규 ((주)바이오알파) ;
  • 나재운 (순천대학교 공과대학 고분자공학과) ;
  • 최창용 (순천대학교 공과대학 고분자공학과)
  • Received : 2014.10.13
  • Accepted : 2014.11.19
  • Published : 2015.05.25

Abstract

The adhesion of tissue and organ occur with frequency after surgery. Theomosensitive hydrogel was prepared from poloxamer/chitosan/epidermal growth factor as adhesion barrier agent. The prepared hydrogel showed sol-gel transition temperatures around human temperature and gelation temperature was the faster within 1 min. The hydrogel sustained the release of epidermal grow factor during 7 days. The hydrogel was highly effective for the prevention of tissue and organ adhesion in rat model. The thermosensitive and antibacterial chitosan hydrogel can be useful to consider the anti-adhesion barrier with increased adhesion of organ and sustained release of epidermal growth factor.

조직과 장기 유착은 외과적 수술 후 부작용으로 자주 발생된다. 이러한 조직 유착을 방지하기 위하여 유착부위에 장벽을 형성하여 장기 유착을 방지할 수 있는 온도감응성 하이드로젤 유착방지제를 제조하고자 하였다. 폴록사머, 키토산과 표피성장인자를 가지고 온도감응성 키토산 하이드로젤을 제조하였다. 제조한 키토산 하이드로젤은 인체 내 온도와 유사한 $35^{\circ}C$에서 졸-젤 전이현상을 보였고, 1분 이내에 빠르게 젤화되었다. 키토산 하이드로젤은 표피성장인자를 7일 동안 천천히 방출하였고, 마우스모델에서 평가한 결과 조직 유착 방지를 효과적으로 하는 것을 확인하였다. 온도 감응성과 항균성을 갖는 키토산 하이드로젤이 장기 부착의 증가와 표피성장인자를 천천히 방출하는 유착방지제로서 유용하게 사용될 수 있다.

Keywords

Acknowledgement

Supported by : 보건복지부

References

  1. H. Y. Yang, K. S. Suh, Y. K. Youn, S. W. Kim, S. J. Kim, K. U. Lee, and Y. H. Park, J. Korean Surg. Soc., 52, 335 (1997).
  2. W. J. Lee, B. I. Moon, J. B. Park, I. M. Kim, and B. O. You, J. Korean Surg. Soc., 49, 192 (1995).
  3. K. Falk, P. Bjorquist, M. Stromqvist, and L. Holmdahl, Br. J. Surg., 8, 286 (2001).
  4. H. S. Shim, Y. W. Lee, Y. M. Lee, Y. H. Oh, S. W. Kwon, J. H. Kim, and S. K. Sohn, J. Korean Sur. Soc., 63, 179 (2002).
  5. M. Hurme, K. Katevuo, F. Nykvist, T. Aalto, H. Alaranta, and S. Einola, Acta Radiol., 32, 286 (1991). https://doi.org/10.1177/028418519103200404
  6. D. Attwood, J. H. Collett, and C. J. Tait, Int. J. Pharm., 126, 25 (1985).
  7. V. V. Ranade and J. B. Cannon, Drug Delivery Systems, CRC Press, London, 2011.
  8. C. J. Brine and P. R. Austin, Comp. Biochem. Physiol., B: Comp. Biochem., 69, 283 (1981). https://doi.org/10.1016/0305-0491(81)90242-X
  9. F. Shahi, J. K. V. Arachchi and Y. J. Jeon, Trends Food Sci. Technol., 10, 37 (1999). https://doi.org/10.1016/S0924-2244(99)00017-5
  10. E. E. Evans and S. P. Kent, J. Histochem. CytoChem., 10, 24 (1962). https://doi.org/10.1177/10.1.24
  11. S. Tokura and I. Azuma, Chitin Derivatives in Life Science, Japan Soc. Chitin, Sapporo, 1992.
  12. I. Ikeda, M. Sugano, K. Yoshida, E. Sasaki, Y. Iwamoto, and K. Hatano, J. Agric. Food Chem., 41, 431(1993). https://doi.org/10.1021/jf00027a016
  13. R. A. A. Muzzarelli, C. Lough, and M. Emanuelli, Carbohydr. Res., 164, 433 (1987). https://doi.org/10.1016/0008-6215(87)80146-5
  14. D. H. Na, Y. S. Youn, I. B. Lee, E. J. Park, C. J. Park, and K. C. Lee, Pharm. Dev. Technol., 11, 513 (2006). https://doi.org/10.1080/10837450600941053
  15. R. A. Goodlad, T. G. Wilson, W. Lenton, H. Gregory, K. G. Mccullagh, and N. A. Wright, Experientia, 41, 1161 (1985). https://doi.org/10.1007/BF01951708
  16. L. E. Bragg, T. C. Hollingsed, and J. S. Thompson, J. Parenter. Enteral Nutr., 14. 283 (1990). https://doi.org/10.1177/0148607190014003283
  17. M. Reim, T. Kehrer, and M. Lund, Ophthalmologica, 197, 179 (1988). https://doi.org/10.1159/000309941
  18. Y. Jaacobi, A. A. Israel, and E. P. Goldberg, J. Surg. Res., 55, 422 (1993). https://doi.org/10.1006/jsre.1993.1163
  19. A. A. Luciano, K. S. Hauser, and J. Benda, Am. J. Obstet. Gynecol., 146, 88 (1983). https://doi.org/10.1016/0002-9378(83)90932-8
  20. I. R. Schmolka, J. Am. Oil. Chem., 54, 110 (1977). https://doi.org/10.1007/BF02894385
  21. G. Wanka, H. Hoffman, and W. Ulbricht, Macromolecules, 27, 4145 (1994). https://doi.org/10.1021/ma00093a016
  22. S. H. Oh, J. K. Kim, K. S. Song, S. M. Noh, S. H. Ghil, S. H. Yuk, and J. H. Lee, J. Biomed. Mater. Res., 72A, 306 (2005). https://doi.org/10.1002/jbm.a.30239
  23. K. Edsman, J. Carlfors, and R. Petersson, Eur. J. Pharm. Sci., 6, 105 (1998). https://doi.org/10.1016/S0928-0987(97)00075-4
  24. Y. Y Chen, H. C. Wu, J. S. Sun, G. C. Dong, and T. W. Wang, Langmuir, 29, 3721 (2013). https://doi.org/10.1021/la400268p
  25. H. H. Jung, K. Park, and D. K. Han, J. Control. Release, 147, 84 (2010). https://doi.org/10.1016/j.jconrel.2010.06.020
  26. R. K. Prud'homme, G. Wu, and D. K. Schneider, Langmuir, 12, 4651 (1996). https://doi.org/10.1021/la951506b
  27. J. K. Park, K. J. Lee, D. H. Son, C. Choi, M. K. Jang, and J.-W. Nah, J. Chitin Chitosan, 16, 45 (2011).
  28. J. Chen, R. Jhou, L. Li, B. Li, X. Zhang, and J. Su, Molecules, 18, 12415 (2013). https://doi.org/10.3390/molecules181012415
  29. G. Wei, H. Xu, P. T. Ding, S. M. Li, and J. M. Zheng, J. Control. Release, 83, 65 (2002). https://doi.org/10.1016/S0168-3659(02)00175-X
  30. H. Ellis, W. Harrison, and T. B. Hugh, Br. J. Surg., 52, 471 (1965). https://doi.org/10.1002/bjs.1800520616
  31. M. H. Kim, S. C. Park, M. K. Jang, J. W. Nah, K. S. Hahm, and Y. Park, J. Chitin Chitosan, 13, 1 (2008).
  32. T. Gratieri, G. M. Gelfuso, E. M. Rocha, V. H. Sarmoto, O. D. Freitas, and R. F. V. Lopez, Eur. J. Pharmaceut. Biopharmaceut., 75, 186 (2010). https://doi.org/10.1016/j.ejpb.2010.02.011

Cited by

  1. Fungal Chitosan-Derived Biomaterials Modified with Kalanchoe pinnata as Potential Hemostatic Agents-Development and Characterization vol.13, pp.8, 2021, https://doi.org/10.3390/polym13081300