DOI QR코드

DOI QR Code

A Faster Approach to Stereocomplex Formation of High Molecular Weight Polylactide Using Supercritical Dimethyl Ether

디메틸에테르 초임계 유체를 이용한 고분자량 폴리락티드 스테레오 콤플렉스의 제조

  • Bibi, Gulnaz (Department of Chemical and Biochemical Engineering, Dongguk University-Seoul) ;
  • Jung, Youngmee (Biomaterials Research Center, Korea Institute of Science and Technology) ;
  • Lim, Jong Choo (Department of Chemical and Biochemical Engineering, Dongguk University-Seoul) ;
  • Kim, Soo Hyun (Biomaterials Research Center, Korea Institute of Science and Technology)
  • Received : 2014.09.10
  • Accepted : 2014.11.09
  • Published : 2015.05.25

Abstract

Engineering the polylactide via stereocomplexation with supercritical fluid (SCF) technology paved way to fabricate polymers with enhanced thermal and mechanical properties. We aimed to establish a SCF medium with excellent solubility for PLA without any additional solvent/co-solvent. We, therefore, employed supercritical dimethyl ether to synthesize 100% stereocomplex polylactide from high molecular weight homopolymers with an excellent yield. The remarkable solubility of the homopolymers in dimethyl ether is the key for quick conversion to s-PLA. This study proves a rapid synthesis route of dry s-PLA powder with sc-DME at 250 bar, $70^{\circ}C$ and 1.5 h, which are reasonably achievable processing parameters compared to the conventional methods. The degree of stereocomplexation was evaluated under the effect of pressures, temperatures, times, homopolymer-concentrations and molecular weights. An increment in the degree of stereocomplexation was observed with increased temperature and pressure. Complete conversion to s-PLA was obtained for PLLA and PDLA with $M_n{\sim}200kg{\cdot}mol^{-1}$ with a total homopolymer to total DME ratio of 6:100% w/w at prescribed reaction conditions. The degree of stereocomplexation was determined by DSC and confirmed by XRD. Considerable improvement in thermo-mechanical properties of s-PLA was observed. DSC and TGA analyses proved a $50^{\circ}C$ enhancement in melting transition and a high onset temperature for thermal degradation of s-PLA respectively.

초임계 유체 기술을 이용한 폴리락티드 스테레오 콤플렉스 제조는 폴리락티드의 열적 및 기계적 물성을 향상시키는 좋은 방법이다. 이 연구에서는 초임계 유체인 디메틸에테르를 이용하여 고분자량 폴리락티드를 높은 수율로 100% 스테레오 콤플렉스화를 시켰다. 폴리락티드에 대한 디메틸에테르의 높은 용해성은 이 공정의 핵심요소로 250 bar, $70^{\circ}C$, 1.5시간에 반응이 종료되었다. 폴리락티드의 스테레오 콤플렉스 연구는 압력, 온도, 시간, 농도 및 분자량을 변화시키며 진행하였다. 스테레오 콤플렉스화는 온도와 압력이 증가할 때 높아졌다. 분자량 20만 이상인 PLLA와 PDLA는 6%의 디메틸에테르에서 100% 스테레오 콤플렉스화가 이루어졌다. 스테레오 콤플렉스화 정도는 DSC 및 XRD를 통해 이루어졌다. 또한 DSC 및 TGA 분석을 통해 융점이 $50^{\circ}C$ 이상 높아진 폴리락티드가 얻어졌음을 확인하였다.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. S. H. Kim, Y. Jung, S. I. Kim, and J. I. Lim, Polym. Korea, 37, 411 (2013). https://doi.org/10.7317/pk.2013.37.4.411
  2. Y. Ikada, K. Jamshidi, H. Tsuji, and S. H. Hyon, Macromolecules, 20, 904 (1987). https://doi.org/10.1021/ma00170a034
  3. H. Tsuji, Macromol. Biosci., 5, 569 (2005). https://doi.org/10.1002/mabi.200500062
  4. H. J. Kang, Y. H. Kim, S. H. Kim, and S. W. Chun, Polym. Korea, 24, 656 (2000).
  5. S. H. Kim, Y. H. Kim, and W. J. Kim, Polym. Korea, 24, 431 (2000).
  6. M. Spinu, U.S. Patent 5,317,064, (1994).
  7. K. Fukushima and Y. Kimura, Macromol. Symp., 224, 133 (2005). https://doi.org/10.1002/masy.200550612
  8. K. S. Anderson and M. A. Hillmyer, Polymer, 47, 2030 (2006). https://doi.org/10.1016/j.polymer.2006.01.062
  9. K. Fukushima and Y. Kimura, J. Polym. Sci., Part A: Polym. Chem., 46, 3714 (2008). https://doi.org/10.1002/pola.22712
  10. P. Purnama and S. H. Kim, Macromolecules, 43, 1137 (2010). https://doi.org/10.1021/ma902536p
  11. S. H. Kim, Y. Jung, and M. K Kang, Macromol. Res., 21, 1036 (2013). https://doi.org/10.1007/s13233-013-1120-8
  12. S. H. Kim, D. H. Yoon, S. Y. Kim, and B. Prabowo, Polym. Korea, 35, 284 (2011).
  13. P. Purnama and S. H. Kim, Polym. Int., 61, 939 (2012). https://doi.org/10.1002/pi.4162
  14. E. Reverchon, G. D. Porta, I. De Rosa, P. Subra, and D. Letourner, J. Supercrit. Fluids, 18, 239 (2000). https://doi.org/10.1016/S0896-8446(00)00069-3
  15. J. M. Lee, B. C. Lee, and S. J. Hwang, J. Chem. Eng. Data, 45, 1162 (2000). https://doi.org/10.1021/je0001678
  16. J. D. Abraham, K. Joseph, and M. W. David, Editors, Handbook of Biodegradable Polymers, CRC Press, Boca Raton, 1998.
  17. H. Tsuji, F. Horii, M. Nakagawa, Y. Ikada, H. Odani, and R. Kitamaru, Macromelecules, 25, 4144 (1992).
  18. H. Tsuji, A. Mizuno, and Y. Ikada, J. Appl. Polym. Sci., 76, 947 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000509)76:6<947::AID-APP22>3.0.CO;2-5
  19. H. Tsuji, S. H. Hyon, and Y. Ikada, Macromelecules, 24, 5651 (1991). https://doi.org/10.1021/ma00020a026
  20. H. Tsuji and Y. Ikada, Polymer, 40, 6699 (1999). https://doi.org/10.1016/S0032-3861(99)00004-X
  21. M. A. McHugh and V. J. Krukonis, Supercritical Fluid Extraction: Principles and Practice, 2nd Ed., Butterworth-Heinemann, Boston, MA, 1994.
  22. B. C. Lee and Y. M Kuk, J. Chem. Eng. Data, 47, 367 (2002). https://doi.org/10.1021/je010270c
  23. B. Herman, Aerosol Spray Rep., 33, 385 (1994).
  24. S. Bobbo and R. Camporese, J. Chem. Thermodynam., 30, 1041 (1998). https://doi.org/10.1006/jcht.1998.0369
  25. D. B. Bivens and B. H. Minor, Int. J. Refrig., 21, 567 (1998). https://doi.org/10.1016/S0140-7007(98)00027-9
  26. D. A. Good, Y. Li, and J. S. Francisco, Chem. Phys. Lett., 313, 267 (1999). https://doi.org/10.1016/S0009-2614(99)01032-5
  27. D. J. Wuebbles, A. Jain, J. Edmonds D. Harvey, and K. Hayhoe, Environ. Pollut., 100, 57 (1999). https://doi.org/10.1016/S0269-7491(99)00088-3
  28. D. A. Good, J. S Francisco, A. Jain, and D. J. Wuebbles, J.Geophys. Res., 103, 2818 (1998).
  29. J. Wu, Z. Liu, J. Pan, and X. Zhao, J. Chem. Eng. Data, 49, 32 (2004). https://doi.org/10.1021/je0340046
  30. T. A. Semelsberger, R. L. Borup, and H. L. Greene, J. Power Sources, 156, 497 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.082
  31. S. H. Kim, Y. D. Park, and S. Y. Kim, Macromol. Symp., 249-250, 515 (2007). https://doi.org/10.1002/masy.200750429
  32. K. S. Oh, W. Bae, and H. Kim, Polymer, 48, 1450 (2007). https://doi.org/10.1016/j.polymer.2007.01.019
  33. K. S. Oh, W. Bae, and H. Kim, Eur. Polym. J., 44, 415 (2008). https://doi.org/10.1016/j.eurpolymj.2007.11.036
  34. K. S. Oh, W. Bae, and H. Kim, Ind. Eng. Chem. Res., 47, 5734 (2008). https://doi.org/10.1021/ie071526w
  35. S.-H. Lee and M. A. McHugh, Polymer, 38, 1317 (1997). https://doi.org/10.1016/S0032-3861(96)00644-1
  36. B. M. Hasch, S. H. Lee, and M. A. McHugh, J. Appl. Polym. Sci., 59, 1107 (1996). https://doi.org/10.1002/(SICI)1097-4628(19960214)59:7<1107::AID-APP7>3.0.CO;2-I
  37. Y.-M. Kuk and B.-C. Lee, J. Chem. Eng. Data, 46, 1344 (2001). https://doi.org/10.1021/je010056o
  38. R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th Ed., McGraw-Hill, New York, 1987.
  39. K. Fukushima and Y. Kimura, Polym. Int., 55, 626 (2006). https://doi.org/10.1002/pi.2010
  40. H. J. Choi, K. H. Lee, and J. Kim, Polym. Korea, 24, 358 (2000).
  41. H. J. Kang, Y. H. Kim, S. H. Kim, and S. W. Chun, Polym. Korea, 24, 333 (2000).
  42. Y. Fan, H. Nishida, Y. Tokiwa, and T. Endo, Polym. Degrad. Stabil., 86, 197 (2004). https://doi.org/10.1016/j.polymdegradstab.2004.03.001

Cited by

  1. Supercritical fluid technology parameters affecting size and behavior of stereocomplex polylactide particles and their composites pp.00323888, 2017, https://doi.org/10.1002/pen.24681
  2. Novel Strategy of Lactide Polymerization Leading to Stereocomplex Polylactide Nanoparticles Using Supercritical Fluid Technology vol.4, pp.9, 2016, https://doi.org/10.1021/acssuschemeng.6b00446
  3. Effects of Block Structure and Poly(propylene glycol) Block Length on Stereocomplexation and Mechanical Properties of Poly(propylene glycol)-b-Polylactide Blend Films vol.42, pp.3, 2015, https://doi.org/10.7317/pk.2018.42.3.385
  4. Strategy for Stereocomplexation of Polylactide Using O/W Emulsion Blending and Applications as Composite Fillers, Drug Carriers, and Self-Nucleating Agents vol.8, pp.23, 2015, https://doi.org/10.1021/acssuschemeng.0c02503
  5. Process intensification for the synthesis of ultra-small organic nanoparticles with supercritical CO2 in a microfluidic system vol.397, pp.None, 2015, https://doi.org/10.1016/j.cej.2020.125333