DOI QR코드

DOI QR Code

감마선을 이용한 아크릴산이 도입된 골조직공학용 PCL/BCP 나노섬유 지지체의 개발

Development of Acrylic Acid Grafted Polycaprolactone (PCL)/Biphasic Calcium Phosphate (BCP) Nanofibers for Bone Tissue Engineering Using Gamma-Irradiation

  • 정진오 (한국원자력연구원 첨단방사선연구소 공업환경연구부) ;
  • 정성린 (한국원자력연구원 첨단방사선연구소 공업환경연구부) ;
  • 신영민 (한국원자력연구원 첨단방사선연구소 공업환경연구부) ;
  • 박종석 (한국원자력연구원 첨단방사선연구소 공업환경연구부) ;
  • 권희정 (한국원자력연구원 첨단방사선연구소 공업환경연구부) ;
  • 안성준 (농업회사법인 (주)자담) ;
  • 허중보 (부산대학교 치의학과) ;
  • 신흥수 (한양대학교 생명공학과) ;
  • 임윤묵 (한국원자력연구원 첨단방사선연구소 공업환경연구부)
  • Jeong, Jin-Oh (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Jeong, Sung In (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Shin, Young Min (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Park, Jong-Seok (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Gwon, Hui-Jeong (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • An, Sung-Jun (Jadam Co.) ;
  • Huh, Jung-Bo (Department of Prosthodontics, School of Dentistry, Pusan National University, Dental Research Institute) ;
  • Shin, Heungsoo (Department of Bioengineering, Division of Applied Chemical and Bio Engineering, Hanyang University) ;
  • Lim, Youn-Mook (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • 투고 : 2014.08.09
  • 심사 : 2014.11.16
  • 발행 : 2015.05.25

초록

Polycaprolactone(PCL)과 biphasic calcium phosphate(BCP)는 생체적합성 및 골 형성 촉진 등으로 인해 정형외과 소재로 사용되고 있다. 하지만, PCL은 표면이 소수성으로 인해 세포의 부착 및 증식에 제한적이기 때문에 이를 극복하기 위해 본 연구에서는 감마선을 이용하여 골 재생을 위한 친수성이 향상된 PCL/BCP 나노섬유를 제조하였다. 나노섬유는 전기방사를 통해 제작했으며, 감마선을 이용하여 acrylic acid(AAc)를 도입하였다. SEM을 통해 나노섬유 표면을 확인하였고, AAc가 도입된 나노섬유 위에서 MG63의 초기 생존율이 현저히 증가한 것을 확인하였다. 알칼리성 포스파테이즈 활성은 $1.239{\pm}0.226nmole/{\mu}g/min$으로 개질되지 않은 나노섬유($0.590{\pm}0.286nmole/{\mu}g/min$) 보다 증가하였다. 따라서, AAc가 도입된 PCL/BCP 나노섬유는 골조직 재생에 활용될 수 있을 것으로 기대된다.

Polycaprolactone (PCL) and biphasic calcium phosphate (BCP) have been considered as useful materials for orthopedic devices and osseous implants because of their biocompatibility and bone-forming activity. However, PCL-based scaffolds have hydrophobic surfaces reducing initial cell adhesion or proliferation. To overcome the limitation, we fabricated surface-modified PCL/BCP nanofibers using gamma-irradiation for bone tissue engineering. PCL/BCP nanofibers were prepared by electrospinning and then we supplemented hydrophilicity by introducing acrylic acid (AAc) through gamma-irradiation. We confirmed the surface of nanofibers by SEM, and then the initial viability of MG63 was significantly increased on the AAc grafted nanofibers, and alkaline phosphatase activity($1.239{\pm}0.226nmole/{\mu}g/min$) improved on the modified nanofibers than that on the non-modified nanofibers($0.590{\pm}0.286nmole/{\mu}g/min$). Therefore, AAc-grafted nanofibers may be a good tool for bone tissue engineering applications.

키워드

과제정보

연구 과제 주관 기관 : 미래창조과학부, 보건복지부

참고문헌

  1. G B. Park, J. W. Park, H. W. An, D. J. Yang, S. K. Choi, I. S. Jang, S. I. Yeo, and J. Y. Seo, J Korean Acad. Periodontol., 36, 797 (2006). https://doi.org/10.5051/jkape.2006.36.4.797
  2. M. S. K. Chong, C. N. Lee, and S. H. Teoh, Mater. Sci. Eng., C, 27, 309 (2007). https://doi.org/10.1016/j.msec.2006.03.008
  3. Z. Ma, C. Gao, Y. Gong, and J. Shen, Biomaterials, 26, 1253 (2005). https://doi.org/10.1016/j.biomaterials.2004.04.031
  4. G. E. Park, M. A. Pattison, K. Park, and T. J. Webster, Biomaterials, 26, 3075 (2005). https://doi.org/10.1016/j.biomaterials.2004.08.005
  5. J. M. Williams, A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. J. Hollister, and S. Das, Biomaterials, 26, 4817 (2005). https://doi.org/10.1016/j.biomaterials.2004.11.057
  6. Y. Lei, B. Rai, K. H. Ho, and S. H. Teoh, Mater. Sci. Eng., C, 27, 293 (2007). https://doi.org/10.1016/j.msec.2006.05.006
  7. B. Y. Tay, S. X. Zhang, M. H. Myint, F. L. Ng, M. Chandrasekaran, and L. K. A. Tan, J. Mater. Proc. Tech., 182, 117 (2007). https://doi.org/10.1016/j.jmatprotec.2006.07.016
  8. K.-J. Wu, C.-S. Wu, and J.-S. Chang, Proc. Biochem., 42, 669 (2007). https://doi.org/10.1016/j.procbio.2006.12.009
  9. Y. M. Shin, J. S. Park, S. I. Jeong, S. J. An, H. J. Gwon, Y. M. Lim, Y. C. Nho, and C. Y. Kim, Biotechnol. Bioproc. Eng., 19, 341 (2014). https://doi.org/10.1007/s12257-013-0781-7
  10. I. Manjubala and M. Sivakumar, Mater. Chem. Phys., 71, 272 (2001). https://doi.org/10.1016/S0254-0584(01)00293-0
  11. Y. Li, W. Weng, and K. C. Tam, Acta Biomater., 3, 251 (2007). https://doi.org/10.1016/j.actbio.2006.07.003
  12. C. Shuai, P. Feng, C. Cao, and S. Peng, Biotechnol. Bioproc. Eng., 18, 520 (2013). https://doi.org/10.1007/s12257-012-0508-1
  13. C. Mangano, E. Bartolucci, and C. Mazzocco, Clin Oral Implants Res., 18, 23 (2003).
  14. R. Langer and J. P. Vacanti, Science, 260, 920 (1993). https://doi.org/10.1126/science.8493529
  15. B. S. Kim and D. J. Mooney, TIBTECH, 16, 224 (1998). https://doi.org/10.1016/S0167-7799(98)01191-3
  16. M. S. Bae, S. I. Jeong, S. E. Kim, J. B. Lee, D. N. Heo, and I. K. Kwon, Tissue Eng. Regen. Med., 5, 196 (2008).
  17. I. K. Kwon, S. Kidoaki, and T. Matsuda, Biomaterials, 26, 3929 (2005). https://doi.org/10.1016/j.biomaterials.2004.10.007
  18. Z. Shahrooz and H. A. Vahid, Iran Polym., 19, 457 (2010).
  19. Z. Chen, X. Mo, and F. Qing, Mater. Len., 61, 3490 (2007). https://doi.org/10.1016/j.matlet.2006.11.104
  20. K. Ma, C. K. Chan, S. Liao, W. Y. K. Hwang, Q. Feng, and S. Ramakrishna, Biomaterials, 29, 2096 (2008). https://doi.org/10.1016/j.biomaterials.2008.01.024
  21. T. G. Kim and T. G. Park, Tissue Eng., 12, 221 (2006). https://doi.org/10.1089/ten.2006.12.221
  22. H. S. Yang, K. Park, J. J. Kim, B. S. Kim, and D. K. Han, Tissue Eng. Regen. Med., 5, 498 (2008).
  23. L. Grondahl, A. Chandler-Temple, and M. Trau, Biomacromolecules, 6, 2197 (2005). https://doi.org/10.1021/bm050127m
  24. J. Choi, H. J. Jung, B. J. Park, Y. K. Joung, K. Park, and D. K. Han, Polym. Korea, 36. 357 (2011).
  25. Y. M. Shin, W. J. Kim, J. S. Park, H. J. Gwon, Y. C. Nho, and Y. M. Lim, Journal of Radiation Industry, 5, 371 (2011).
  26. H. A. Kim, J. S. Park, J. B. Choi, Y. M. Lim, and Y. C. Nho, Polym. Korea, 36, 71 (2011).
  27. J. B. Choi, S. I. Jeong, H. J. Gwon, J. S. Park, Y. C. Nho, Y. H. Choi, K. J. Park, M. Y. Park, H. Shin, and Y. M. Lim, Journal of Radiation Industry, 6, 159 (2012).
  28. J. Y. Lim, Y. M. Shin, J. B. Choi, J. O. Jeong, H. J. Gwon, S. I. Jeong, J. S. Park, and Y. M. Lim, Journal of Radiation Industry, 7, 45 (2013).
  29. Y. M. Shin, K. S. Kim, Y. M. Lim, Y. C. Nho, and H. Shin, Biomacromolecules, 9, 1772 (2008). https://doi.org/10.1021/bm701410g
  30. Y. M. Shin, J. Y. Lim, J. S. Park, H. J. Gwon, S. I. Jeong, and Y. M. Lim, Biotechnol. Bioproc. Eng., 19, 118 (2014). https://doi.org/10.1007/s12257-013-0723-4
  31. S. Y. Jo, M. H. Youn, Y. M. Lim, H. J. Gwon, J. S. Park, and Y. C. Nho, Journal of Radiation Industry, 4, 147 (2010).
  32. A. Saadat, A. Behnamghader, S. Karbasi, D. Abedi, M. Soleimani, and A. Shafiee, Biotechnol. Bioproc. Eng., 18, 587 (2013). https://doi.org/10.1007/s12257-012-0744-4