DOI QR코드

DOI QR Code

1차원 구조를 가지는 육티탄산 나트륨의 염료감응형 태양전지 음극재 사용 가능성 평가

Feasibility Test of One-Dimensional Sodium Hexatitanate as an Anode Material in Dye-Sensitized Solar Cells

  • 바더마 (부산대학교 환경공학과) ;
  • 오광중 (부산대학교 환경공학과) ;
  • 조국 (부산대학교 환경공학과)
  • Badema, Badema (Department of Environmental Engineering, Pusan National University) ;
  • Oh, Kwang-Joong (Department of Environmental Engineering, Pusan National University) ;
  • Cho, Kuk (Department of Environmental Engineering, Pusan National University)
  • 투고 : 2014.12.23
  • 심사 : 2015.04.02
  • 발행 : 2015.05.01

초록

Dye sensitized solar cells (DSSCs), which is one of the contending renewable energy sources, have the problem of low efficiency. To improve the efficiency, the fast electron transport and long electron lifetime are required. In this study, one-dimensional sodium hexatitanate, which is expected to have an advantageous structure for electron transports, was synthesized and the feasibility of the material on DSSC was tested. Its physical properties were characterized by the SEM, XRD, and BET method. The dye adsorption and solar cell properties were also characterized. In addition to the expectation of fast electron transport, sodium hexatitanate showed longer electron lifetime: This means sodium hexatitanate can improve the DSSC efficiency. However, it showed low current and voltage because of the low surface area leading to the low amount of dye adsorbed. Therefore, it should be mixed with titanium oxide with high surface area for the optimal performance.

키워드

참고문헌

  1. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson, Chem. Rev., 110, 6595 (2010). https://doi.org/10.1021/cr900356p
  2. J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, and S. Gimenez, The Journal of Physical Chemistry C, 113, 17278 (2009). https://doi.org/10.1021/jp9037649
  3. P. Yang, R. Yan, and M. Fardy, Nano Letters, 10, 1529 (2010). https://doi.org/10.1021/nl100665r
  4. M. Adachi, Y. Murata, I. Okada, and S. Yoshikawa, J. Electrochem. Soc., 150, G488 (2003). https://doi.org/10.1149/1.1589763
  5. M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, Journal of the American Chemical Society, 126, 14943 (2004). https://doi.org/10.1021/ja048068s
  6. M. D. Wei, Y. Konishi, H. S. Zhou, H. Sugihara, and H. Arakawa, J. Electrochem. Soc., 153, A1232 (2006). https://doi.org/10.1149/1.2194667
  7. Y. Wang, T. Sun, D. Yang, H. Liu, H. Zhang, X. Yao, and H. Zhao, Phys. Chem. Chem. Phys., 14, 2333 (2012). https://doi.org/10.1039/c2cp23143c
  8. H. K. Ku, H. J. Oh, K. J. Noh, S. C. Jung, W. Kang, and S. J. Kim, Electron. Mater. Lett., 8, 387 (2012). https://doi.org/10.1007/s13391-012-2018-x
  9. Y. Shinohara, Y. Ajiki, K. Teshima, and S. Oishi, US Patent, 8669625, B2 (2014).
  10. K. Teshima, S. Lee, S. Murakoshi, S. Suzuki, K. Yubuta, T. Shishido, M. Endo, and S. Oishi, European Journal of Inorganic Chemistry, 2010, 2936 (2010). https://doi.org/10.1002/ejic.200901175
  11. M. Shirpour, J. Cabana, and M. Doeff, Energ. Environ. Sci., 6, 2538 (2013). https://doi.org/10.1039/c3ee41037d
  12. K. M. Reddy, S. V. Manorama, and A. R. Reddy, Materials Chemistry and Physics, 78, 239 (2003). https://doi.org/10.1016/S0254-0584(02)00343-7
  13. D. B. Buchholz, J. Liu, T. J. Marks, M. Zhang, and R. P. H. Chang, Acs. Appl. Mater. Inter., 1, 2147 (2009). https://doi.org/10.1021/am900321f
  14. X. H. Wang, J. G. Li, H. Kamiyama, M. Katada, N. Ohashi, Y. Moriyoshi, and T. Ishigaki, Journal of the American Chemical Society, 127, 10982 (2005). https://doi.org/10.1021/ja051240n
  15. T. W. Hamann, R. A. Jensen, A.B.F. Martinson, H. Van Ryswyk, and J. T. Hupp, Energ. Environ. Sci., 1, 66 (2008). https://doi.org/10.1039/b809672d
  16. D. K. Hwang, D. Song, S. S. Jeon, T. H. Han, Y. S. Kang, and S. S. Im, Journal of Materials Chemistry A, 2, 859 (2014). https://doi.org/10.1039/C3TA13367B
  17. J. Qu, G. R. Li, and X. P. Gao, Energ Environ Sci., 3, 2003 (2010). https://doi.org/10.1039/c003646c