DOI QR코드

DOI QR Code

Electrical Properties of Vanadium-doped Lanthanium Silicates for SOFCs

SOFC 응용을 위한 Vanadium이 첨가된 란타늄 실리케이트의 전기적 특성

  • Lee, Dong-Jin (Department of Ceramic Engineering, RIGET, Gyeongsang National University) ;
  • Lee, Sung-Gap (Department of Ceramic Engineering, RIGET, Gyeongsang National University) ;
  • Kim, Min-Ho (Department of Ceramic Engineering, RIGET, Gyeongsang National University) ;
  • Kim, Kyeong-Min (Department of Ceramic Engineering, RIGET, Gyeongsang National University)
  • Received : 2015.02.11
  • Accepted : 2015.04.01
  • Published : 2015.05.01

Abstract

In this paper to improve the ionic conduction properties, lanthanum silicate apatite $La_{9.33}(SiO_4)_6O_2$ ceramic, which substituted by V ions at Si-site, were fabricated by the mixed-oxide method. And we investigated the structural and electrical properties of $La_{9.33}(Si_{6-x}V_x)O_{26}$ specimens with variation of dopants for the application of solid oxide fuel cells. The sintering temperature of $La_{9.33}(Si_{6-x}V_x)O_{26}$ specimens decreased from $1,600^{\circ}C$ to $1,400^{\circ}C$. As results of X-ray diffraction patterns, all $La_{9.33}(Si_{6-x}V_x)O_{26}$ specimens showed the formation of a complete solid solution in a apatite polycrystallin structure. But the specimens doped with more than 1.5mol% showed the second phase, $La_2SiO_5$ and $SiO_2$. The specimen dopants with 1.0 mol% showed the maximum ion conductivity. Ion conducting and activation energy of the $La_{9.33}(Si_5V_1)O_26$ specimens were about $7.8{\times}10^{-4}S/cm$ 1.62 eV at $600^{\circ}C$, respectively.

Keywords

References

  1. P. Ryan, O'hayre, and S. W. Cha, W. C. Fritz, and B. Prinz, Fuelcell Fundamentals.
  2. J. S. Lee, M. Lerch, and J. Maier, Journal of Solid State Chenustry, 179, 270 (2006). https://doi.org/10.1016/j.jssc.2005.10.012
  3. H. Yoshioka, Journal of the American Ceramic Society, 90, 3099 (2007). https://doi.org/10.1111/j.1551-2916.2007.01862.x
  4. E. Kendrick, M. Islam, and P. Slater, Journal of Materials Chemistry, 17, 3104 (2007). https://doi.org/10.1039/b704426g
  5. J. R. Tolchard, M. S. Islam, and P. R. Slater, J. Mater. Chen., 12, 1956 (2005).
  6. G. Blasse, J. Solid State Chem., 12, 181 (1975).
  7. S. C. Singhal and K. Kendall, High temperature Solid Oxide Fuel Cells: Fundanmentals, Design and Applications (Elsevier, Oxford, UK, 2003).
  8. S. Nakayma, T. Kageyama, H. Aono, and Y. Sadaoka, Journal of materials Chemistry, 5, 1801 (1995). https://doi.org/10.1039/jm9950501801
  9. S. Shin, H. H. Huang, and M. Ishigame, Solid State Ionics, 40, 910 (1990).
  10. A. D. Brailsford and D. K. Hohnke, Solid State Ionics, 11, 133 (1983). https://doi.org/10.1016/0167-2738(83)90050-4
  11. K. D. Kruer, Ann. Rev. Mater. Res., 33, 333 (2003). https://doi.org/10.1146/annurev.matsci.33.022802.091825