DOI QR코드

DOI QR Code

Antioxidant Capacity and Protective Effects on Neuronal PC-12 Cells of Domestic Bred Kiwifruit

국내 육성 참다래의 항산화능 및 PC-12 신경세포 보호 효과

  • Lee, Inil (Graduate School of Biotechnology, Kyung Hee University) ;
  • Lee, Bong Han (Graduate School of Biotechnology, Kyung Hee University) ;
  • Eom, Seok Hyun (Skin Biotechnology Center, Kyung Hee University) ;
  • Oh, Chang-Sik (Department of Horticultural Biotechnology, Kyung Hee University) ;
  • Kang, Hee (Department of East-West Medical Science, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Cho, Youn-Sup (Fruit Research Institute, Jeollanam-do Agricultural Research and Extension Services) ;
  • Kim, Dae-Ok (Graduate School of Biotechnology, Kyung Hee University)
  • 이인일 (경희대학교 생명공학원) ;
  • 이봉한 (경희대학교 생명공학원) ;
  • 엄석현 (경희대학교 피부생명공학센터) ;
  • 오창식 (경희대학교 원예생명공학과) ;
  • 강희 (경희대학교 동서의과학과) ;
  • 조윤섭 (전라남도 농업기술원 과수연구소) ;
  • 김대옥 (경희대학교 생명공학원)
  • Received : 2014.07.23
  • Accepted : 2014.12.03
  • Published : 2015.04.30

Abstract

This study was conducted to comparatively evaluate antioxidant capacity (AC) of seven cultivars of kiwifruit (Actinidia spp.) and their protective effects on neuronal PC-12 cells. The contents of total phenolics (TP) and total flavonoids (TF) of kiwifruits were also examined. Five cultivars of kiwifruit, Actinidia chinensis (cv. Haehyang and cv. Haegeum), A. eriantha (cv. Bidan), A. arguta ${\times}$ A. deliciosa (cv. Mansoo), and A. arguta (cv. Chiak), were bred in Korea, while two cultivars, A. deliciosa (cv. Hayward) and A. linguiensis (accession number 041AE), originated from New Zealand and China, respectively. Skin extracts of kiwifruit showed higher TP, TF, and AC than flesh extracts. The highest levels of TP and AC were found in cv. Bidan flesh extract among cultivars studied, but the TF content of cv. Bidan flesh extract was the lowest. The kiwifruit bred in Korea had higher AC than their counterparts. AC of kiwifruit had a highly positive linear correlation with TP and TF. The flesh extracts from cv. Hayward, cv. Haehyang, and cv. Haegeum significantly (p < 0.05) prevented PC-12 cells from oxidative stress induced using $H_2O_2$ compared to a control with $H_2O_2$ only. Overall, our results suggest that kiwifruit bred in Korea may offer a good source of antioxidants and serve as functional materials.

본 연구는 참다래의 항산화능을 측정하고, 참다래 과육 추출물의 PC-12 세포주에 대한 보호 효과를 비교 평가하였다. 또한, 참다래의 총페놀 함량 및 총플라보노이드 함량를 측정하였다. 국내에서 육성 재배 중인 참다래인 해향(Actinidia chinensis cv. Haehyang), 해금(A. chinensis cv. Haegeum), 비단(A. eriantha cv. Bidan), 만수(A. arguta ${\times}$ A. deliciosa cv. Mansoo), 치악(A. arguta cv. Chiak) 등 5품종과 뉴질랜드 유래 헤이워드(A. deliciosa cv. Hayward), 중국 유래 041AE(A. linguiensis accession number 041AE) 포함 총 7품종을 시험에 사용하였다. 참다래의 껍질 추출물은 총페놀함량, 총플라보노이드 함량, 항산화능이 과육 추출물보다 더 높았다. 7품종 중에서 비단 품종 과육이 총페놀 함량과 항산화능이 가장 높았지만, 총플라보노이드 함량은 가장 낮았다. 참다래 추출물의 항산화능은 총페놀 함량과 총플라보노이드 함량과 양의 선형적 상관관계를 가졌다. 해향, 해금, 헤이워드 품종은 세포 내의 산화적 스트레스를 감소시켜 PC-12 세포를 유의적으로 보호하였다. 본 연구는 해금, 해향, 비단 등 국내 개발 육성 참다래가 외래 도입종에 비해 더 높은 항산화능을 갖는다는 결과를 보였다. 이는 국내 육성 참다래가 높은 생리활성물질을 제공하는 기능성 소재로 활용 가능하다는 것을 시사한다.

Keywords

References

  1. Ames, B.N., M.K. Shigenaga and T.M. Hagen. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. U.S.A. 90:7915-7922. https://doi.org/10.1073/pnas.90.17.7915
  2. Apel, K. and H. Hirt. 2004. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373-399. https://doi.org/10.1146/annurev.arplant.55.031903.141701
  3. Arts, I.C. and P.C. Hollman. 2005. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr. 81:317S-325S.
  4. Brand-Williams, W., M.E. Cuvelier and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28:25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  5. Deutsch, J.C. 1998. Ascorbic acid oxidation by hydrogen peroxide. Anal. Biochem. 255:1-7. https://doi.org/10.1006/abio.1997.2293
  6. Drewnowski, A. and C. Gomez-Carneros. 2000. Bitter taste, phytonutrients, and the consumer: A review. Am. J. Clin. Nutr. 72:1424-1435.
  7. Du, G., M. Li, F. Ma and D. Liang. 2009. Antioxidant capacity and the relationship with polyphenol and vitamin C in Actinidia fruits. Food Chem. 113:557-562. https://doi.org/10.1016/j.foodchem.2008.08.025
  8. Fiorentino, A., B. D'brosca, S. Pacifico, C. Mastellone, M. Scognamiglio and P. Monaco. 2009. Identification and assessment of antioxidant capacity of phytochemicals from kiwi fruits. J. Agric. Food Chem. 57:4148-4155. https://doi.org/10.1021/jf900210z
  9. Girard-Lalancette, K., A. Pichette and J. Legault. 2009. Sensitive cell-based assay using DCFH oxidation for the determination of pro- and antioxidant properties of compounds and mixtures: Analysis of fruit and vegetable juices. Food Chem. 115:720-726. https://doi.org/10.1016/j.foodchem.2008.12.002
  10. Guan, S., Y.-M. Bao, B. Jiang and L.-J. An. 2006. Protective effect of protocatechuic acid from Alpinia oxyphylla on hydrogen peroxide-induced oxidative PC12 cell death. Eur. J. Pharmacol. 538:73-79. https://doi.org/10.1016/j.ejphar.2006.03.065
  11. Harker, F., B. Carr, M. Lenjo, E. MacRae, W. Wismer, K. Marsh, M. Williams, A. White, C. Lund and S. Walker. 2009. Consumer liking for kiwifruit flavour: A meta-analysis of five studies on fruit quality. Food Qual. Prefer. 20:30-41. https://doi.org/10.1016/j.foodqual.2008.07.001
  12. Heo, H.-J., H.-Y. Cho, B. Hong, H.-K. Kim, E.-K. Kim, B.-G. Kim and D.-H. Shin. 2001. Protective effect of 4',5-dihydroxy-3',6,7-trimethoxyflavone from Artemisia asiatica against A${\beta}$-induced oxidative stress in PC12 cells. Amyloid-J. Protein Fold. Disord. 8:194-201. https://doi.org/10.3109/13506120109007362
  13. Huang, D., B. Ou, M. Hampsch-Woodill, J.A. Flanagan and R.L. Prior. 2002. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 50:4437-4444. https://doi.org/10.1021/jf0201529
  14. Jia, Z., M. Tang and J. Wu. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64:555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  15. Jung, K.-A., T.-C. Song, D. Han, I.-H. Kim, Y.-E. Kim and C.-H. Lee. 2005. Cardiovascular protective properties of kiwifruit extracts in vitro. Biol. Pharm. Bull. 28:1782-1785. https://doi.org/10.1248/bpb.28.1782
  16. Kahkonen, M.P., A.I. Hopia, H.J. Vuorela, J.-P. Rauha, K. Pihlaja, T.S. Kujala and M. Heinonen. 1999. Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 47:3954-3962. https://doi.org/10.1021/jf990146l
  17. Keston, A.S. and R. Brandt. 1965. The fluorometric analysis of ultramicro quantities of hydrogen peroxide. Anal. Biochem. 11:1-5. https://doi.org/10.1016/0003-2697(65)90034-5
  18. Kim, D.-O. and C.Y. Lee. Extraction and isolation of polyphenolics. pp I1.2.1-I1.2.12. In: VCurrent protocols in food analytical chemistry. Wrolstad RE (ed.). John Wiley & Sons, Inc., New York, USA (2002)
  19. Kim, D.-O. and C.Y. Lee. 2004. Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit. Rev. Food Sci. Nutr. 44:253-273. https://doi.org/10.1080/10408690490464960
  20. Kim, J.G., K. Beppu and I. Kataoka. 2009. Varietal differences in phenolic content and astringency in skin and flesh of hardy kiwifruit resources in Japan. Sci. Hortic. 120:551-554. https://doi.org/10.1016/j.scienta.2008.11.032
  21. Kim, J.H., H. Yang, H.J. Hong, W.Y. Kang, D.G. Kim, S.C. Kim, K.J. Song, D. King, C.H. Han and Y.J. Lee. 2010. Neuroprotective effects of Korean kiwifruit against t-BHPinduced cell damage in PC12 cells. Korean J. Plant Res. 23:165-171.
  22. Latocha, P., T. Krupa, R. Wolosiak, E. Worobiej and J. Wilczak. 2010. Antioxidant activity and chemical difference in fruit of different Actinidia sp. Int. J. Food Sci. Nutr. 61:381-394. https://doi.org/10.3109/09637480903517788
  23. Lim, Y.J., C.-S. Oh, Y.-D. Park, D.-O. Kim, U.-J. Kim, Y.-S. Cho and S.H. Eom. 2014. Physiological components of kiwifruits with in vitro antioxidant and acetylcholinesterase inhibitory activities. Food Sci. Biotechnol. 23:943-949. https://doi.org/10.1007/s10068-014-0127-z
  24. Liu, S., J.E. Manson, I.-M. Lee, S.R. Cole, C.H. Hennekens, W.C. Willett and J.E. Buring. 2000. Fruit and vegetable intake and risk of cardiovascular disease: the Women's Health Study. Am. J. Clin. Nutr. 72:922-928.
  25. Motohashi, N., Y. Shirataki, M. Kawase, S. Tani, H. Sakagami, K. Satoh, T. Kurihara, H. Nakashima, I. Mucsi, A. Varga and J. Molnar. 2002. Cancer prevention and therapy with kiwifruit in Chinese folklore medicine: A study of kiwifruit extracts. J. Ethnopharmacol. 81:357-364. https://doi.org/10.1016/S0378-8741(02)00125-3
  26. Moyer, R.A., K.E. Hummer, C.E. Finn, B. Frei and R.E. Wrolstad. 2002. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J. Agric. Food Chem. 50:519-525. https://doi.org/10.1021/jf011062r
  27. Nishiyama, I., T. Fukuda and T. Oota. 2005. Genotypic differences in chlorophyll, lutein, and ${\beta}$-carotene contents in the fruits of Actinidia species. J. Agric. Food Chem. 53:6403-6407. https://doi.org/10.1021/jf050785y
  28. Nishiyama, I., Y. Yamashita, M. Yamanaka, A. Shimohashi, T. Fukuda and T. Oota. 2004. Varietal difference in vitamin C content in the fruit of kiwifruit and other Actinidia species. J. Agric. Food Chem. 52:5472-5475. https://doi.org/10.1021/jf049398z
  29. Pavlica, S. and R. Gebhardt. 2010. Protective effects of flavonoids and two metabolites against oxidative stress in neuronal PC12 cells. Life Sci. 86:79-86. https://doi.org/10.1016/j.lfs.2009.10.017
  30. Proteggente, A.R., A.S. Pannala, G. Paganga, L. Van. Buren, E. Wagner, S. Wiseman, F. Van De. Put, C. Dacombe and C.A. Rice-Evans. 2002. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radic. Res. 36:217-233. https://doi.org/10.1080/10715760290006484
  31. Rural Development Administration. 2013. New fruit cultivars developed by governmental institutes of Korea. www.nihhs.go.kr. accesed on July 18, 2014.
  32. Samadi-Maybodi, A. and M.R. Shariat. 2003. Characterization of elemental composition in kiwifruit grown in northern Iran. J. Agric. Food Chem. 51:3108-3110. https://doi.org/10.1021/jf025960e
  33. Scalzo, J., A. Politi, N. Pellegrini, B. Mezzetti and M. Battino. 2005. Plant genotype affects total antioxidant capacity and phenolic contents in fruit. Nutrition 21:207-213. https://doi.org/10.1016/j.nut.2004.03.025
  34. Sestili, P., G. Brandi, L. Brambilla, F. Cattabeni and O. Cantoni. 1996. Hydrogen peroxide mediates the killing of U937 tumor cells elicited by pharmacologically attainable concentrations of ascorbic acid: Cell death prevention by extracellular catalase or catalase from cocultured erythrocytes or fibroblasts. J. Pharmacol. Exp. Ther. 277:1719-1725.
  35. Singleton, V.L. and J.A. Rossi, Jr. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16:144-158.
  36. Tavarini, S., E. Degl'nnocenti, D. Remorini, R. Massai and L. Guidi. 2008. Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chem. 107:282-288. https://doi.org/10.1016/j.foodchem.2007.08.015
  37. Wolfe, K.L. and R.H. Liu. 2007. Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. J. Agric. Food Chem. 55:8896-8907. https://doi.org/10.1021/jf0715166
  38. Zheng, W. and S.Y. Wang. 2001. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem. 49:5165-5170. https://doi.org/10.1021/jf010697n

Cited by

  1. Effect of maturity stage at harvest on antioxidant capacity and total phenolics in kiwifruits (Actinidia spp.) grown in Korea vol.56, pp.6, 2015, https://doi.org/10.1007/s13580-015-1085-y
  2. Effects of freeze-drying on antioxidant and anticholinesterase activities in various cultivars of kiwifruit (Actinidia spp.) vol.26, pp.1, 2017, https://doi.org/10.1007/s10068-017-0030-5
  3. Evaluation of bioactive compounds in different tissues of sprouting okra vol.58, pp.5, 2017, https://doi.org/10.1007/s13580-017-0261-7
  4. Lactic fermentation enhances the antioxidant activity of gold kiwifruit vol.25, pp.2, 2018, https://doi.org/10.11002/kjfp.2018.25.2.255
  5. Kiwifruit of Actinidia eriantha cv. Bidan has in vitro antioxidative, anti-inflammatory and immunomodulatory effects on macrophages and splenocytes isolated from male BALB/c mice vol.27, pp.5, 2018, https://doi.org/10.1007/s10068-018-0321-5
  6. 청도반시(Diospyros kaki Thunb. cv. Cheongdo-Bansi) 탈삽 껍질 추출물의 산화스트레스로부터 PC-12 신경세포 보호 효과 vol.49, pp.5, 2017, https://doi.org/10.9721/kjfst.2017.49.5.538
  7. Deastringent Peel Extracts of Persimmon (Diospyros kaki Thunb. cv. Cheongdo-Bansi) Protect Neuronal PC-12 and SH-SY5Y Cells against Oxidative Stress vol.28, pp.7, 2015, https://doi.org/10.4014/jmb.1801.01013
  8. Actinidia chinensis Planch.: A Review of Chemistry and Pharmacology vol.10, pp.None, 2015, https://doi.org/10.3389/fphar.2019.01236
  9. Changes in the Antioxidant Potential of Persimmon Peel Extracts Prepared by Different Extraction Methods vol.27, pp.3, 2015, https://doi.org/10.7783/kjmcs.2019.27.3.186