DOI QR코드

DOI QR Code

Numerical Analysis on the Effect of Increasing Stiffness of Geosynthetics on Soil Displacement and Pile Efficiency in Piled Embankment on Soft Soil

성토지지말뚝구조에서 토목섬유 인장강성 증가에 따른 변위 억제 및 말뚝효율 증가량에 대한 수치해석적 분석

  • 이태희 (경희대학교 사회기반시스템공학과) ;
  • 이수형 (한국철도기술연구원) ;
  • 이일화 (한국철도기술연구원) ;
  • 정영훈 (경희대학교 사회기반시스템공학과)
  • Received : 2015.02.17
  • Accepted : 2015.04.09
  • Published : 2015.04.30

Abstract

A numerical analysis on the effect of increasing tensile stiffness of the geosynthetics on the soil displacement and pile efficiency was conducted. Parametric studies by changing the stiffness of soft soil, internal friction and dilatancy angles of the embankment material, and flexual stiffness of the composite layer including the geosynthetics were carried out. In general, increasing stiffness of the geosynthetics improves the pile efficiency, whereas the amount of its improvement depends on the condition of parameters. In case of the sufficiently low stiffness of the soft soil or high flexual stiffness of the composite layer including the geosynthetics, a noticeable increase in the pile efficiency can be observed. When the stiffness of the soft soil is very low, the increase in the stiffness of the geosynthetics can significantly reduce the vertical displacement in the piled embankment. When the flexual stiffness of the composite layer is sufficiently high, increasing stiffness of the geosynthetics can greatly improve the pile efficiency.

성토지지말뚝구조의 다양한 조건에서 토목섬유의 인장강성 변화가 성토체 및 토목섬유의 연직변위와 말뚝효율에 미치는 영향을 수치해석적으로 평가하였다. 매개변수 해석을 위해 연약지반의 강성, 성토재의 내부 마찰각과 팽창각, 토목섬유를 포함한 복합 재료층의 휨 강성을 변화시켰다. 토목섬유의 인장강성이 증가하면 말뚝효율이 증가하지만 그 증가량은 해석 조건에 따라 다르다. 성토재의 내부 마찰각이 매우 낮거나 복합 재료층의 휨 강성이 매우 높으면 뚜렷한 말뚝효율 증가가 나타났다. 연약지반의 강성이 매우 낮은 경우에 토목섬유의 인장강성을 증가시키면 뚜렷하게 연직 변위가 감소하였다. 복합 재료층의 휨 강성이 높으면 토목섬유 인장강성을 증가시켜 말뚝효율이 크게 향상되었다.

Keywords

References

  1. ABAQUS (2005), Simulia, Inc.
  2. Blanc, M., Rault, G., Thorel, L., and Almeida, M. (2013), "Centrifuge Investigation of Load Transfer Mechanisms in a Granular Mattress Above a Rigid Inclusions Network", Geotextiles and Geomembranes, Vol.36, pp.92-105. https://doi.org/10.1016/j.geotexmem.2012.12.001
  3. BS 8006 (2012), Code of practice for strengthened/reinforced soils and other fills, British standards institution, London.
  4. Colling, J. G. (2004), National highway institute ground improvement manual. Technical summary No. 10: Column supported embankments, National highway institute, Washington, DC.
  5. Chung, S.-G., Jang, W.-Y., Ninjgarav, E., and Ryu, C.-K. (2006), "Compressibility Characteristics Associated with Depositional Environments of Pusan clay in the Nakdong River Estuary", Journal of Korean Geotechnical Society, Vol.22, No.12, pp.57-65 (in Korean).
  6. Design Criteria for Railroad (Road bed) (2011), Korean Rail Network Authority (in Korean).
  7. Gangakhedkar, R. (2004), Geosynthetic reinforced pile supported embankments, Ph.D Thesis, University of Florida.
  8. Han, J. and Gabr, M. A. (2002), "Numerical Analysis of Geosyntheticreinforced and Pile-supported Earth Platforms Over Soft Soil", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.128, No.1, pp.44-53. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:1(44)
  9. Handy, R. L. (1985), "The Arch in Soil Arching", Journal of Geotechnical Engineering, ASCE, Vol.111, No.3, pp.302-318. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(302)
  10. Hello, B. L. and Villard, P. (2009), "Embankments Reinforced by Piles and Geosynthetics-Numerical and Experimental Studies Dealing with the Rransfer of Load on the Soil Embankment", Engineering Geology, Vol.106, No.1, pp.78-91. https://doi.org/10.1016/j.enggeo.2009.03.001
  11. Hewlett, W. J. and Randolph, M. F. (1988), "Analysis of Piled Embankments", Ground Engineering, Vol.21, No.3, pp.12-18.
  12. Jennings, K. and Naughton, P. J. (2012), "Similitude Conditions Modeling Geosynthetic-reinforced Piled Embankments Using FEM and FDM Techniques", ISRN Civil Engineering, Vol.2012, Article ID 251726, http://dx.doi.org/10.5402/2012/251726.
  13. Jung, Y.-H., Hong, J.-H., and Choi, C.-Y. (2011), "Dynamic Responses in Roadbed of Concrete Track System Subjected to Increasing Train Speed", Proc. of 2011 Autumn Conference of the Korean Society for Railway, Jeju, pp.853-860 (in Korean).
  14. Kim, J-.S. (2005), FDM Analysis on the effect of vertical load acting on embankment pile with geosynthetics, Master's thesis, Chung-ang University (in Korean).
  15. Lai, H.-J., Zheng, J.-J., Zhang, J., Zhang, R.-J., and Cui, L. (2014), "DEM Analysis of "Soil"- Arching Within Geogrid-Reinforced and Unreinforced Pile-supported Embankments", Computers and Geotechnics, Vol.61, pp.13-23. https://doi.org/10.1016/j.compgeo.2014.04.007
  16. Lee, S.-H. (2009), "Numerical Study on the Effects of Geosynthetic Reinforcement on the Pile-supported Embankment", Journal of the Korean society for railway, Vol.12, No.2, pp.276-284 (in Korean).
  17. Lee, T., Jung, Y.-H., Shin, S.-Y., Lee, I.-W., and Lee, S.-H. (2014), "A Comparative Study Between 2-dimensional and 3-dimensional Numerical Piled Embankment Models for Column Stress Ratio", Proc. of 2014 Autumn Conference of the Korean Society for Railway, Jeju (in Korean).
  18. Lee, T., Lee, S.-H., Lee, I.-W., and Jung, Y.-H. (2015), "3-dimensional Numerical Analysis for Tension Force in the Geosynthetic of the Piled-embankment According to the Pile-cap Shapes", Proc. of 2015 Spring Conference of the Korean Geotechnical Society, Seoul, pp.132-137 (in Korean).
  19. Low, B. K., Tang, S. K., and Choa, V. (1994), "Arching in Piled Embankments", Journal of Geotechnical Engineering, Vol.120, No.11, pp.1917-1938. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:11(1917)
  20. McNulty, J. W. (1965), "An Experimental Study of Arching in Sand", Technical Report No. I-674, U.S. Army Engineer Waterways Experiment Station, Corps of Engineers, Vicksburg, Mississippi.
  21. Min, Z. and Wei-Ping, C. (2014), "On Equal Settlement Plane Height in Piled Reinforced Embankments", Journal of Chemical and Pharmaceutical research, Vol.6, No.4, pp.23-29.
  22. Park, K-.W. (2006), Numerical Analysis on the Behavior of Geosynthetic- Reinforced and Pile-Supported, Master's thesis, Chung-ang University (in Korean).
  23. Pham, Ha T. V., Suleiman, M. T., and White, D. J. (2004), "Numerical Analysis of Geosynthetic-rammed Aggregate Pier Supported Embankments", Geotechnical Engineering for Transportation Projects, Proceedings of Geo-Trans 2004, ASCE, Los Angeles, California, pp.657-664.
  24. Plaut, R. H. and Filz, G. H. (2010), "Analysis of Geosynthetic Reinforcement in Pile-supported Embankments, Part III: Axisymmetric Model", Geosynthetic international, Vol.17, No.2, pp.77-85. https://doi.org/10.1680/gein.2010.17.2.77
  25. Seo, Y-.S. (2006), A load transfer of piled embankments reinforced by geosynthetics, Master's thesis, Chung-ang University (in Korean).
  26. Terzaghi, K. (1943), Theoretical soil mechanics, John Wiley and Sons, New York, pp.66-76
  27. Van Eekelen, S. J., Bezuijen, A., Lodder, H. J., and Van Tol, A. F. (2012), "Model Experiments on Piled Embankments. Part I", Geotextiles and Geomembranes, Vol.32, pp.69-81. https://doi.org/10.1016/j.geotexmem.2011.11.002
  28. Yun-Min, C., Wei-Ping, C., and Ren-Peng, C. (2008), "An Experimental Investigation of Soil Arching Within Basal Reinforced and Unreinforced Piled Embankments", Geotextiles and Geomembranes, Vol.26, No.2, pp.164-174. https://doi.org/10.1016/j.geotexmem.2007.05.004

Cited by

  1. 성토지지말뚝공법의 국내 적용성 분석 vol.32, pp.3, 2015, https://doi.org/10.7843/kgs.2016.32.3.5