DOI QR코드

DOI QR Code

원자층 증착법에 의한 Al2O3 박막 형성에 따른 모스아이 구조 반사방지 필름의 기계적 물성에 미치는 영향

Effect of Atomic Layer Deposited Al2O3 Thin Films on the Mechanical Properties of Anti-reflective Moth Eye Nanostructured Films

  • 윤은영 (부산대학교, 재료공학부) ;
  • 이우재 (부산대학교, 재료공학부) ;
  • 장경수 ((주)서영, 나노융합사업팀) ;
  • 최현진 (부산테크노파크, 멤스나노부품생산센터) ;
  • 최우창 (부산테크노파크, 멤스나노부품생산센터) ;
  • 권세훈 (부산대학교, 재료공학부)
  • Yun, Eun Young (School of Materials Science and Engineering, Pusan National University) ;
  • Lee, Woo-Jae (School of Materials Science and Engineering, Pusan National University) ;
  • Jang, Kyung Su (Nano Convergence Team, Seo Yeong Co. Ltd.) ;
  • Choi, Hyun-Jin (MEMS/NANO Component Production Center) ;
  • Choi, Woo-Chang (MEMS/NANO Component Production Center) ;
  • Kwon, Se Hun (School of Materials Science and Engineering, Pusan National University)
  • 투고 : 2015.03.06
  • 심사 : 2015.04.22
  • 발행 : 2015.04.30

초록

$Al_2O_3$ thin films were deposited on the moth eye anti-reflective nanostructured polycarbonate films by atomic layer deposition (ALD) techniques. Without ALD-$Al_2O_3$ thin films, moth eye anti-reflective nanostructured films had a high optical transmittance of 95.47% at a wavelength of 550 nm and a very poor hardness of 0.1381 GPa. With increasing the thickness of $Al_2O_3$ thin films from 5 to 25 nm, the transmittance of moth eye anti-reflective nanostructured films was gradually decreased from 94.94 to 93.12%. On the other hand, the hardness of the films was greatly increased from 0.3498 to 0.7806 GPa with increasing the thickness of $Al_2O_3$ thin films. This result shows that ALD thin films can be applied to improve mechanical properties with an adequate optical transmittance of the conventional moth eye anti-reflection nanostructure films.

키워드

참고문헌

  1. M. Onodera, H. Matsuda, H Mori, and T. Ito : SID. Int. Symp. Dig. Tec, 25 (1994) 823.
  2. T. Kawamura, H. Kawamura, and K. Kobara : SID. Int. Symp. Dig. Tec, 91 (1991) 49.
  3. L. C. Klein : "Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics, and Specialty Shapes", Noyes Publications, New Jersey, (1988) 49.
  4. F. C. Stedile, and B. A. S. De Barros Jr : Thin Solid Films, 170 (1989) 285. https://doi.org/10.1016/0040-6090(89)90734-7
  5. Y. F. Huanng, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen : Nat. Nanotechnol, 2 (2007) 770. https://doi.org/10.1038/nnano.2007.389
  6. B. J. Bae, S. H. Hong, S. U. Kwak, and H. Lee : J. Kor. Inst. Surf. Eng. 42 (2009) 59. https://doi.org/10.5695/JKISE.2009.42.2.059
  7. D. W. Yun, Y. S. Son, J. H. Kyung, H. C. Park, S. H. Lee, and B. I. Kim : KSPE Spring Conference, (2012) 95.
  8. M. Heckele, W. Bacher, and K. Muller : Sens. Actuators. A-Phys, 83 (2000) 130. https://doi.org/10.1016/S0924-4247(00)00296-X
  9. V. Miikkulainen, M. Leskela, M. Ritala, and R. L. Puurunen : J. Appl. Phys, 113 (2013) 021301. https://doi.org/10.1063/1.4757907
  10. S. J. Wilson, and M. C. Hutley : J. Mod. Opt, 29 (1982) 993.
  11. S. H. Hong, B. J. Bae, K. S. Han, E. J. Hong, H. Lee, and K. W. Choi : Electron. Mater. Lett, 5 (2009) 39. https://doi.org/10.3365/eml.2009.03.039
  12. Z. Q. Huang : Ph. D. Thesis, National university of Singapore, (2010).
  13. http://www.flexvuefilms.com/pdf/en/TouchScreen.pdf