DOI QR코드

DOI QR Code

Studies on solid inflammable lubricants for refractory slates

내화물 슬레이트용 고체윤활제의 연구

  • Received : 2014.10.02
  • Accepted : 2015.03.12
  • Published : 2015.03.31

Abstract

In order to produce an optimal performance solid lubricant used in the refractory slates, various compositions of starch, graphite and water were evaluated by testing their viscosity, coefficient of friction and wear performance. At 15% starch content, the degree of viscosity increment rose in proportional to graphite content and the lowest coefficient of friction was observed when the graphite content was at 30 wt%. Our results demonstrate that, as the water content decrease, the ratio of solid content increases, which compromises the surface coating resulting in increase of coefficient of friction. The best wear test result was obtained when the starch content was at 15 wt% with graphite content at either 25 wt% or 30 wt%.

본 논문은 내화물 슬레이트용 고체윤활제를 제조하기 위하여 Starch 및 Graphite의 함량 변화를 통하여 점도, 마찰계수 및 마모성능을 평가하여 Starch, Graphite와 water 간의 적절한 함량 조합을 찾고자 하였다. 먼저 starch 15 wt%일 때 점도는 graphite 함량에 따라 점도 상승이 커짐을 알 수 있었다. 또한 마찰계수 시험에서는 starch 15 wt%이고, graphite 30 wt%일 때 마찰계수가 가장 적었다. 이는 물의 함량이 줄어들고 고체의 비율이 높아짐에 따라 흡착력이 낮아져 표면에서 피막이 조금씩 탈락되며 마찰계수가 상승하는 것으로 판단된다. 마모 시험결과 starch 15 wt%이면서, graphite 25 wt% 혹은 30 wt%일 때 가장 양호한 결과를 얻었다.

Keywords

References

  1. Y. Lee, K. Chun, J. Lee, "Polysilicon surface modification technique to reduce sticking of microstructures", The 8th International Conference on Solid-State Sensors and Actuators and Eurosensors IX, Stockholm, Sweden, pp. 206-209, 1995.
  2. T. Yokohata, K. Kato, "Load-dependency of friction coefficient between silicon oxides and diamond under ultra-low contact load", J. of Tribology, Vol. 120, pp. 503-509, 1998. DOI: http://dx.doi.org/10.1115/1.2834579
  3. R. Gohar, H. Rahnejat, "Fundamentals of Tribology, 2nd", Imperial College Press, pp. 57-81, 2012. DOI: http://dx.doi.org/10.1142/p836
  4. E. Rabinowicz, "Friction and Wear of Materials", John Wiley and Sons Inc., New York, pp. 191-235, 1995.
  5. M. Kaneta, T. Ogata, Y. Takubo, M. Naka, "Proceedings of the Institution of Mechanical Engineers". Part J, Journal of Engineering Tribology, Vol. 214, pp. 327-328, 2001.
  6. N. P. Suh, M. Mosleh, P. S. Howard, "Control of friction", Vol.175, No.1, pp. 151-158, Wear, 1994. https://doi.org/10.1016/0043-1648(94)90178-3
  7. R. J. Bratton and S. K. Lau, "Zirconia Thermal Barrier Coatings", Advances in Ceramics, Vol. 3, pp. 226-227, 1981.
  8. H. S. Ahn, J. Y. Kim, and D. S. Lim, "Tribological behaviour of plasma sprayed zirconia coatings". Wear, Vol. 203, pp. 77-78, 1997. DOI: http://dx.doi.org/10.1016/S0043-1648(96)07395-4
  9. S. J. Kim, M. H. Cho, K. H. Cho, and H. Jang, "Complementary effects of solid lubricants in the automotive brake lining", Tribology International, Vol. 40, pp. 15-20, 2007. DOI: http://dx.doi.org/10.1016/j.triboint.2006.01.022
  10. I. L. Singer and H. Pollak, editors, "Solid lubrication processes in fundamentals of friction: macroscopic and 6 microscopic process", London: Kluwer Academic Publishers, pp. 237-261, 1992. DOI: http://dx.doi.org/10.1007/978-94-011-2811-7