DOI QR코드

DOI QR Code

컨텐츠 스트리밍 데이터의 전송효율 증대를 위한 압축센싱기반 전송채널 대역폭 절감기술 연구

Improvement of Bandwidth Efficiency for High Transmission Capacity of Contents Streaming Data using Compressive Sensing Technique

  • 정의석 (한국전자통신연구원 모바일미디어융합연구실) ;
  • 이용태 (한국전자통신연구원 모바일미디어융합연구실) ;
  • 한상국 (연세대학교 전기전자공학부)
  • Jung, Eui-Suk (Electronics and Telecommunications Research Institute) ;
  • Lee, Yong-Tae (Electronics and Telecommunications Research Institute) ;
  • Han, Sang-Kook (Department of Electrical and Electronic Engineering, Yonsei University)
  • 투고 : 2015.01.14
  • 심사 : 2015.03.12
  • 발행 : 2015.03.31

초록

본 논문에서는, 압축센싱 기법을 이용하여, 방송 네트워크 시스템의 멀티미디어 신호 전송 대역폭 효율성을 극대화할 수 있는 기법을 제안하였다. 멀티미디어 이미지의 sparisity를 높이기 위해서 2차원 이산 웨이블렛 변환 기법을 적용하는 샘플링 기법과, orthogonal matching pursuit기반 L1 최소화기법을 이용하여 복원하는 기법을 본 논문에서 제안하였다. 다양한 멀티미디어 신호가 압축센싱 기술에 의해 압축되어지기 때문에, 다양한 멀티미디어 데이터가 전송 시 점유하는 대역폭을 감소시킬 수 있다. 10Gs/s로 샘플링 되어진, 20% 압축률을 갖는 $256{\times}256$ 흑백스케일 이미지가 20km 광전송되어진 후에, Sparse한 방송신호를 복원하는, L1 최소화 기법을 이용하여 복원되었다(비트 에러오류율: $10^{-12}$).

A new broadcasting signal transmission, which can save its channel bandwidth using compressive sensing(CS), is proposed in this paper. A new compression technique, which uses two dimensional discrete wavelet transform technique, is proposed to get high sparsity of multimedia image. A L1 minimization technique based on orthogonal matching pursuit is also introduced in order to reconstruct the compressed multimedia image. The CS enables us to save the channel bandwidth of wired and wireless broadcasting signal because various transmitted data are compressed using it. A $256{\times}256$ gray-scale image with compression rato of 20 %, which is sampled by 10 Gs/s, was transmitted to an optical receiver through 20-km optical transmission and then was reconstructed successfully using L1 minimization (bit error rate of $10^{-12}$ at the received optical power of -12.2 dB).

키워드

참고문헌

  1. Konstantin Pussep, Sebastian Kaune, Osama Abboud, Christian Huff, Ralf Steinmetz, "On energy-awareness for peer-assisted streaming with set-top boxes," 2010 International Conference on Network and Service Management (CNSM), pp. 163-170, 2010. DOI: http://dx.doi.org/10.1109/CNSM.2010.5691312
  2. J. Armstrong, "OFDM for optical communications," J Lightwave Technol vol. 27, no. 3, pp. 189-204, 2009. DOI: http://dx.doi.org/10.1109/JLT.2008.2010061
  3. W. Shieh, "OFDM for flexible high-speed optical networks," J. Lightwave Technol vol. 29, no.10, pp. 1560-1577, 2011. DOI: http://dx.doi.org/10.1109/JLT.2011.2132115
  4. D.L. Donoho, "Compressed sensing," IEEE Trans Inf Theory vo. 52, no. 4, pp. 1289-1306, 2006. DOI: http://dx.doi.org/10.1109/TIT.2006.871582
  5. R.G. Baraniuk, "Compressive sensing [lecture notes]," IEEE Signal Process Mag vol. 24, no. 4, pp. 118-121, 2007. DOI: http://dx.doi.org/10.1109/MSP.2007.4286571
  6. S. Pudlewski, A. Prasanna, and T. Melodia, "Compressed-sensing enabled video streaming for wireless multimedia sensor networks," IEEE Trans Mobile Comput vol. 11, no. 6, pp. 1060-1072, 2012. DOI: http://dx.doi.org/10.1109/TMC.2011.175
  7. M.F. Duarte and Y.C. Eldar, "Structured compressed sensing: From theory to applications," IEEE Trans Signal Process, vol. 59, no. 9, pp. 4053 - 4085, 2011. DOI: http://dx.doi.org/10.1109/TSP.2011.2161982
  8. E.J. Candes and M.B. Wakin, "An introduction to compressive sampling," IEEE Signal Process Mag, vol. 25, no. 2, pp. 21-30, 2008. DOI: http://dx.doi.org/10.1109/MSP.2007.914731