DOI QR코드

DOI QR Code

Pool Boiling Performance of Enhanced Tubes for the Generator of an Absorption Chiller

흡수식 냉동기 재생기용 고성능 전열관의 풀비등 성능

  • Sim, Yong-Sub (Division of Mechanical Engineering, Incheon National University) ;
  • Kim, Nae-Hyun (Division of Mechanical Engineering, Incheon National University)
  • 심용섭 (인천대학교 기계시스템공학부) ;
  • 김내현 (인천대학교 기계시스템공학부)
  • Received : 2014.10.21
  • Accepted : 2015.03.12
  • Published : 2015.03.31

Abstract

For performance improvement and compactness, usage of enhanced tube is inevitable. However, studies on enhanced tubes for generator is very limited. In this study, pool boiling tests were conducted for 7 heat transfer tubes. Test range covered pressure 7.38~101.3 kPa and heat flux $20{\sim}40kW/m^2$. Results show that boiling heat transfer coefficient increases as pressure or heat flux increases. Under atmospheric condition, high heat transfer coefficients were obtained for notched fin and low fin tubes(225% and 202% of the 19.0 mm smooth tube, which yielded the lowest heat transfer coefficient). As pressure decreased, high heat transfer coefficients were obtained for a low fin tube(290% and 288% of the 19.0 mm smooth tube at 12.34 and 7.38 kPa).

흡수식 냉동기의 고효율화와 소형화를 위해서는 고성능 전열관의 연구가 필수적이다. 하지만 재생기용 전열관에 대한 연구는 많이 미흡한 실정이다. 본 연구에서는 만액식 재생기용 전열관의 성능을 파악하기 위한 기초연구로, 형상이 다른 7종의 전열관에 대해 풀비등 실험을 수행하고 비등열전달계수를 도출하였다. 실험은 압력 7.38~101.3 kPa, 열유속 $20{\sim}40kW/m^2$의 범위에서 수행되었다. 실험결과 모든 전열관에서 압력이 증가하고 열유속이 증가할수록 비등열전달계수 값은 증가하였다. 대기압 조건에서는 notched fin 관과 low fin 관이 높은 비등열전달계수를 나타내었고(열전달계수가 가장 낮은 19.0 mm O.D. 평활관의 225% 와 202%), 압력이 낮아질수록 low fin 관이 다른 전열관에 비해 현저히 높은 비등열전달계수를 나타내었다 (12.34와 7.38 kPa에서 19.0 mm O.D. 평활관의 290%와 288%).

Keywords

References

  1. Yoon, J. I., Oh, H. K., and Kashiwagi, T., "Characteristics of heat and mass transfer for a falling film type absorber with insert spring tubes", Trans. of the KSME(B), Vol. 19, No. 6, pp. 1501-1509, 1995
  2. Kawamata, O., Otani, T., Ishitulia, N., and Aliyanchi, T., "Development of high performance heat transfer tubes for absorber of absorption refrigerator", Hitachi Corporation, Vol. 8, pp. 57-62, 1985
  3. Furukawa, M., Sasaki, N., Kaneko, T., and Nosetani, T., "Enhanced heat transfer tubes for absorber of absorption chiller/heater", Trans. of the JAR, Vol. 10, No. 2, pp. 219-226, 1993
  4. Yoon, J. I., Kwon, O. K., and Moon, C. G., "Experimental investigation of heat and mass transfer on absorber with several enhanced tubes", KSME International Journal, Vol. 13, No. 9, pp. 640-646, 1999 https://doi.org/10.1007/BF03184574
  5. Lee, K. T., Lee, H. S., Moon, C. G., Kang, K. C., and Yoon, J. I., "Experimental Study on Performance Characteristics of Absorber with Variations of Tube Diameters", Journal of the Korea society for power system engineering, pp. 328-333, 2004
  6. Kwon, O. K., Cha, D. A., Yun, J. H., and Kim, H. S., "A Study on The Heat Transfer Performance of Evaporator Heat Transfer Tube for Absorption Chiller", Korean journal of air-conditioning and refrigeration engineering, Vol. 21, No. 4, pp. 215-221, 2009
  7. Varma, H. K., Mehrotra, R. K., and Agrawal, K. N., "Heat transfer during pool boiling of libr-water solutions at subatmospheric pressures", International Communications in Heat Mass Transfer, Vol. 21, No. 4, pp. 539-548, 1994 DOI: http://dx.doi.org/10.1016/0735-1933(94)90053-1
  8. Yoon, J. I., Lee, Y. H., and Oh, H. K., "Experimental Study of Surfactant Effect on Generator Pool Boiling Heat Transfer", Transactions of the KSME, pp. 143-146, 1994
  9. Lee, J. H., Kim, B. L., Lee, K. P., and Park, C. W., "A study on performance characteristics of heating tubes used in the falling film generator of a hot water driven absorption chiller", Transactions of the KSME, Vol. 2013, No. 12, pp. 873-876, 2013
  10. Lee, C. C., Chuah, Y. K., Lu, D. C., and Chao, H. Y., "Experimental investigation of pool boiling of lithium bromide solution on a vertical tube under subatmospheric pressures", International Communications in Heat Mass Transfer, Vol. 18, pp. 309-320, 1991 DOI: http://dx.doi.org/10.1016/0735-1933(91)90018-Y
  11. Wilson, E. E., "A basis of rational design of heat-transfer apparatus", Trans. ASME, Vol. 37, pp. 47-70, 1915
  12. Kline, S. J. and McClintock, F. A., "The description of uncertainties in single sample experiments", Mechanical Engineering, Vol. 75, pp. 3-9, 1953
  13. Rohsenow, W. M., " A method of correlating heat transfer data for surface boiling of liquids", Trans. ASME, Vol. 74, pp. 969-975, 1952
  14. Stephan, K., and Abdelsalam, M., "Heat transfer correlations for natural convection boiling", Int. J. Heat Mass Transfer, Vol. 23, pp. 73-87., 1980 DOI: http://dx.doi.org/10.1016/0017-9310(80)90140-4
  15. Gorenflo, D., "Pool boiling" in VDI Heat Atlas(English Version), VDI-Verlag Dusseldorf, Germany, 1993
  16. Gnielinski, V., "New equation for heat and mass transfer in turbulent pipe and channel flow", International Journal of Chemical Engineering, Vol. 1, pp. 359-368, 1976