DOI QR코드

DOI QR Code

PARAMETER CHANGE TEST FOR NONLINEAR TIME SERIES MODELS WITH GARCH TYPE ERRORS

  • Lee, Jiyeon (Department of Statistics Seoul National University) ;
  • Lee, Sangyeol (Department of Statistics Seoul National University)
  • Received : 2014.07.25
  • Published : 2015.05.01

Abstract

In this paper, we consider the problem of testing for a parameter change in nonlinear time series models with GARCH type errors. We introduce two types of cumulative sum (CUSUM) tests: estimates-based and residual-based tests. It is shown that under regularity conditions, their limiting null distributions are the sup of independent Brownian bridges. A simulation study is conducted for illustration.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. F. Chan and M. McAleer, Maximum likelihood estimation of STAR and STAR-GARCH models: theory and Monte Carlo evidence, J. Appl. Econometrics 17 (2002), 509-534. https://doi.org/10.1002/jae.686
  2. F. Chan, M. McAleer, and M. C. Medeiros, Structure and asymptotic theory for nonlinear models with GARCH errors, KIER Working Papers 754, Kyoto University, Institute of Economic Research, 2010.
  3. K. S. Chan and H. Tong, On estimating thresholds in autoregressive models, J. Time Ser. Anal. 7 (1986), no. 3, 179-190. https://doi.org/10.1111/j.1467-9892.1986.tb00501.x
  4. D. B. H. Cline, Stability of nonlinear stochastic recursions with application to nonlinear AR-GARCH models, Adv. Appl. Probab. 39 (2007), 462-491. https://doi.org/10.1239/aap/1183667619
  5. M. D. de Poorter and D. van Dijk, Testing for changes in volatility in heteroscadastic time series - a further examination, (No. EI 2004-38), Report / Econometric Institute, Erasmus University Rotterdam, 2004.
  6. P. Gaenssler and E. Haeusler, On martingale central limit theory, In E. Eberlein and M. S. Taqqu, (Eds.), Dependence in probability and statistics: A survey of recent results, pp. 303-334, Boston: Birkhauser, 1986.
  7. D. Kristensen and A. Rahbek, Asymptotics of the QMLE for a class of ARCH(q) models, Econometric Theory 21 (2005), no. 5, 946-961. https://doi.org/10.1017/S0266466605050474
  8. S. Lee, J. Ha, O. Na, and S. Na, The cusum test for parameter change in time series models, Scand. J. Statist. 30 (2003), no. 4, 781-796. https://doi.org/10.1111/1467-9469.00364
  9. S. Lee and J. Lee, Residual based cusum test for parameter change in AR-GARCH models, In Modeling Dependence in Econometrics, Advances in Intelligent Systems and Computing 251 (2014), 101-111. https://doi.org/10.1007/978-3-319-03395-2_6
  10. S. Lee and J. Song, Test for parameter change in ARMA models with GARCH innovations, Statist. Probab. Lett. 78 (2008), no. 13, 1990-1998. https://doi.org/10.1016/j.spl.2008.01.068
  11. S. Lee, Y. Tokutsu, and K. Maekawa, The cusum test for parameter change in regression models with ARCH errors, J. Japan Statist. Soc. 34 (2004), 173-188. https://doi.org/10.14490/jjss.34.173
  12. S. Ling, On probability properties of a double threshold ARMA conditional heteroskedasticity model, J. Appl. Probab. 36 (1999), 688-705. https://doi.org/10.1239/jap/1032374627
  13. J. Liu, W. K. Li, and C. W. Li, On a threshold autoregression with conditional heteroscedastic variances, J. Statist. Plann. Inference 62 (1997), no. 2, 279-300. https://doi.org/10.1016/S0378-3758(96)00196-6
  14. S. Lundbergh and T. Terasvirta, Modeling economic high frequency time series with STAR-STGARCH models, SSE/EFI Working Paper Series in Economics and Finnce 291, 1999.
  15. R. Luukkonen, P. Saikkonen, and T. Terasvirta, Testing linearity in univariate time series models, Scand. J. Statist. 15 (1988), no. 3, 161-175.
  16. M. Meitz and P. Saikkonen, Stability of nonlinear AR-GARCH models, J. Time Ser. Anal. 29 (2008), no. 3, 453-475. https://doi.org/10.1111/j.1467-9892.2007.00562.x
  17. M. Meitz and P. Saikkonen, Parameter estimation in nonlinear AR-GARCH models, Econometric Theory 27 (2011), no. 6, 1236-1278. https://doi.org/10.1017/S0266466611000041
  18. O. Na, J. Lee, and S. Lee, Change point detection in copula ARMA-GARCH Models, J. Time Ser. Anal. 33 (2012), no. 4, 554-569. https://doi.org/10.1111/j.1467-9892.2011.00763.x
  19. J. Z. Pan, H. Wang, and H. Tong, Estimation and tests for power-transformed and threshold GARCH models, J. Econometrics 142 (2008), no. 1, 352-378. https://doi.org/10.1016/j.jeconom.2007.06.004
  20. D. Straumann and T. Mikosch, Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: A stochastic recurrence equations approach, Ann. Statist. 34 (2006), no. 5, 2449-2495. https://doi.org/10.1214/009053606000000803
  21. H. Tong, Nonlinear Time Series: A Dynamical System Approach, Oxford University Press, Oxford, 1990.

Cited by

  1. How Strong is the Relationship Among Gold and USD Exchange Rates? Analytics Based on Structural Change Models 2019, https://doi.org/10.1007/s10614-017-9743-z
  2. Parameter change test for zero-inflated generalized Poisson autoregressive models vol.50, pp.3, 2016, https://doi.org/10.1080/02331888.2015.1083020
  3. On score vector- and residual-based CUSUM tests in ARMA–GARCH models vol.27, pp.3, 2018, https://doi.org/10.1007/s10260-017-0408-9
  4. Modified residual CUSUM test for location-scale time series models with heteroscedasticity pp.1572-9052, 2018, https://doi.org/10.1007/s10463-018-0679-4
  5. CUSUM test for general nonlinear integer-valued GARCH models: comparison study pp.1572-9052, 2019, https://doi.org/10.1007/s10463-018-0676-7