DOI QR코드

DOI QR Code

Effects of Limestone Powder and Silica Fume on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Mortars

고강도 고함량 고로슬래그 혼합 시멘트 모르터의 수화 및 포졸란 반응에 미치는 석회석 미분말과 실리카퓸의 영향

  • Jeong, Ji-Yong (High-speed Railroad Systems Research Center, Korea Railroad Research Institute) ;
  • Jang, Seung-Yup (High-speed Railroad Systems Research Center, Korea Railroad Research Institute) ;
  • Choi, Young-Cheol (High-tech Construction Materials Center, Korea Conformity laboratories) ;
  • Jung, Sang-Hwa (High-tech Construction Materials Center, Korea Conformity laboratories) ;
  • Kim, Sung-Il (High-speed Railroad Systems Research Center, Korea Railroad Research Institute)
  • 정지용 (한국철도기술연구원 고속철도연구본부) ;
  • 장승엽 (한국철도기술연구원 고속철도연구본부) ;
  • 최영철 (한국건설생활환경시험연구원 첨단건설재료센터) ;
  • 정상화 (한국건설생활환경시험연구원 첨단건설재료센터) ;
  • 김성일 (한국철도기술연구원 고속철도연구본부)
  • Received : 2014.08.26
  • Accepted : 2014.12.16
  • Published : 2015.04.30

Abstract

To evaluate the effects of limestone powder and silica fume on the properties of high-strength high-volume ground granulated blast-furnace slag (GGBFS) blended cement concrete, this study investigated the rheology, strength development, hydration and pozzolanic reaction characteristics, porosity and pore size distribution of high-strength mortars with the water-to-binder ratio of 20, 50 to 80% GGBFS, up to 20% limestone powder, and up to 10% silica fume. According to test results, compared with the Portland cement mixture, the high-volume GGBFS mixture had much higher flow due to the low surface friction of GGBFS particles and higher strength in the early age due to the accelerated cement hydration by increase of free water; however, because of too low water-to-binder ratio and cement content, and lack of calcium hydroxide content, the pozzolanic reactio cannot be activated and the long-term strength development was limited. Limestone powder did not affect the flowability, and also accelerate the early cement hydration. However, because its effect on the acceleration of cement hydration is not greater than that of GGBFS, and it does not have hydraulic reactivity unlikely to GGBFS, compressive strength was reduced proportional to the replacement ratio of limestone powder. Also, silica fume and very fine GGBFS lowered flow and strength by absorbing more free water required for cement hydration. Capillary porosities of GGBFS blended mortars were smaller than that of OPC mortar, but the effect of limestone powder on porosity was not noticeable, and silica fume increased porosity due to low degree of hydration. Nevertheless, it is confirmed that the addition of GGBFS and silica fume increases fine pores.

본 연구는 고강도 고함량 고로슬래그 콘크리트의 특성에 미치는 석회석 미분말과 실리카퓸의 영향을 검토하기 위해 50%에서 최대 80%까지 고로슬래그를 다량 혼합하고, 석회석 미분말을 최대 20%, 실리카퓸을 최대 10%까지 혼합한 물-결합재비 20%의 고강도 시멘트 모르터의 유동성, 강도발현, 수화 및 포졸란 반응 특성, 공극율 및 공극 크기 분포 등을 분석하였다. 실험결과에 따르면 고함량 고로슬래그 배합은 포틀랜드 시멘트 배합에 비해 고로슬래그의 낮은 표면 마찰로 유동성이 크게 향상되고, 시멘트 수화에 필요한 자유수가 많아져 수화반응이 촉진되면서 초기강도가 증가하나, 너무 낮은 물-결합재비와 단위시멘트량으로 인해 수산화칼슘의 생성량이 부족하여 포졸란 반응이 충분히 활성화되지 못함에 따라 장기강도 발현이 억제된다. 석회석 미분말은 유동성에는 큰 영향을 주지 않고, 역시 시멘트의 초기 수화를 촉진하는 것으로 나타났으나, 수화를 가속하는 효과는 고로슬래그보다 높지 않고, 고로슬래그와 달리 수경성이 없기 때문에 오히려 석회석 미분말의 치환율이 높아질수록 압축강도가 낮아지는 것으로 나타났다. 또한 고분말의 고로슬래그를 사용하거나, 또는 실리카퓸으로 고로슬래그를 치환하는 경우 시멘트 수화에 필요한 자유수를 더 많이 흡착함으로써 유동성과 강도를 저하시키는 것으로 나타났다. 또한 고로슬래그를 사용한 배합의 공극율이 보통 포틀랜드 시멘트 배합보다 낮게 나타났으나, 석회석 미분말은 공극율에 뚜렷한 영향을 나타내지 않았고 실리카퓸은 낮은 시멘트 수화도로 인해 공극율을 오히려 증가시키는 것으로 나타났다. 반면 공극 크기 분포에 있어서는 고로슬래그와 실리카퓸를 혼합한 경우 미세공극이 증가하는 것으로 나타났다.

Keywords

References

  1. Choi, W. H., Park, C. W., Jung, W. K., Jeon, B. J., and Kim, G. S., "Durability characteristics of limestone powder added concrete for environment-friendly concrete," Journal of Korea Institute for Structural Maintenance Inspection, Vol. 16, No. 5, 2012, pp. 59-67. https://doi.org/10.11112/jksmi.2012.16.5.059
  2. Yang, K. H., Sim, J. I., Song, J. G., and Lee, J. H., "Material properties of slag-based alkali-activated concrete brick-masonry," Journal of the Architectureal Institute of Korea Structure & Construction, Vol. 27, No. 1, 2011, pp. 11-126.
  3. Choi, S. W., Ryu, D. H., Kim, H. S., and Kim, G. Y., "Hydration properties of low carbon type low heat blended cement," Journal of the Korea Institute of Building Construction, Vol. 13, No. 3, 2013, pp. 218-226. https://doi.org/10.5345/JKIBC.2013.13.3.218
  4. Cho, C. G., Lim, H. J., Yang. K. H., Song, J. K., and Lee, B. Y., "Basic mixing and mechanical tests on hihg ductile fiber reinforced cementless composites," Journal of the Korea Concrete Institute, Vol. 24, No. 2, 2012, pp. 121-127. https://doi.org/10.4334/JKCI.2012.24.2.121
  5. Hester, D., Mcnally, C., and Richardson, M. G., "Study of influence of slag alkali level on the alkali-silica reactivity of slag concrete," Construction and Building Materials, Vol. 19, No. 9, 2005, pp. 661-665. https://doi.org/10.1016/j.conbuildmat.2005.02.016
  6. Leng, F., Feng, N., and Lu, X., "An experiment study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete," Cement and Concrete Research, Vol. 30, 2000, pp. 989-992. https://doi.org/10.1016/S0008-8846(00)00250-7
  7. Mindess, S., Young, J. F., and David, D., Concrete, 2th ed., Prentice Hall, New Jersey, 2003, p. 644.
  8. Mehta, P. K. and Monteiro, P. J. M., Concrete, microstructure, properties, and materials, 3th. ed., McGraw-Hill, New York, 2004, p. 659.
  9. Koh, K. T., Yoo, W. W., and Han, S. M., "A study on strength development and resistance to sulfate attack of mortar incorporating limestone powder," Journal of the Korea Concrete Institute, Vol. 16, No. 3, 2004, pp. 303-310. https://doi.org/10.4334/JKCI.2004.16.3.303
  10. Choi, W. H., Park, C. W., Jung, W. K., and Kim, K. H., "Fundamental properties of limestone powder added cement environment-friendly concrete for concrete pavement," International Journal of Highway Engineering, Vol. 14, No. 4, 2012, pp. 37-49. https://doi.org/10.7855/IJHE.2012.14.4.037
  11. Soroka, I. and Stern, N., Calcareous fillers and the compressive strength of Portland cement, Cement and Concrete Research, Vol. 6, 1976, pp. 367-376. https://doi.org/10.1016/0008-8846(76)90099-5
  12. Heikal, M., El-Didamony, H., and Morsy, M. S., Limestone-filled pozzolanic cement, Cement and Concrete Research, Vol. 30, 2000, pp. 1827-1834. https://doi.org/10.1016/S0008-8846(00)00402-6
  13. Ryu, D. W., Kim, W. J., Yang, W. H., You, J. H., and Ko, J. W., "An experimental study on the freezing-thawing and chloride resistance of concrete using high volumes of GGBS," Journal of the Korea Institute of Building Construction, Vol. 12, No. 3, 2012, pp. 315-322. https://doi.org/10.5345/JKIBC.2012.12.3.315
  14. Ryu, D. W., Kim, W. J., Yang, W. H., and Park, D. C., "An experimental study on the carbonation and drying shrinkage of concrete using high volumes of ground granulated blastfurnace slag," Journal of the Korea Institute of Building Construction, Vol. 12, No. 4, 2012, pp. 393-400. https://doi.org/10.5345/JKIBC.2012.12.4.393
  15. Kwon, Y. J., "An experimental study on the carbonation and drying shrinkage of high strength concrete according to kinds and ratios of mineral admixtures," Journal of the Korea Institute of Building Construction, Vol. 3, No. 3, 2003, pp. 127-133. https://doi.org/10.5345/JKIC.2003.3.3.127
  16. Jung, J. D., Cho, H. D., and Park, S. W., "Properties of hydration heat of high-strength concrete and reduction strategy for heat production," Journal of the Korea Institute of Building Construction, Vol. 12, No. 2, 2012, pp. 203-210. https://doi.org/10.5345/JKIBC.2012.12.2.203
  17. Jeong, J. Y., Jang, S. Y., Choi, Y. C., Jung, S. H., Kim, J. I., "Effects of replacement ratio and fineness of GGBFS on the hydration and pozzolanic reaction of high-strength high-volume GGBFS blended cement pastes," Journal of the Korea Concrete Institute, Vol. 27, No. 2, 2015, pp. 115-125. https://doi.org/10.4334/JKCI.2015.27.2.115
  18. Siddique, R. and Bennacer, R., "Use of iron and steel industry by-product(GGBS) in cement paste and mortar," Resources Conservation and Recycling, Vol. 69, 2012, pp. 29-34. https://doi.org/10.1016/j.resconrec.2012.09.002
  19. KS L ISO 679:2006, Methods of testing cements - Determination of strength, KSA.
  20. KS L 5111:2007, Flow table for use in tests of hydraulic cement, KSA.
  21. ASTM D4284:12, Standard test method for determining pore volume distribution of catalysts and catalyst carrier by mercury intrusion porosimetry, ASTM.
  22. Hesam, M., Alireza, B. and Tayebeh, P., "The pozzolanic reactivity of monodispersed nanosilica hydrosols and their influence on the hydration characteristics of Portland cement," Cement and Concrete Research, Vol. 42, 2012, pp. 1563-1570. https://doi.org/10.1016/j.cemconres.2012.09.004
  23. Escalante-Garcia, J. I. and Sharp, J. H., "Effect of temperature on the hydration of the main clinker phases in Portland cements: Part II. Blended cements," Cement and Concrete Research, Vol. 28, 1998, pp. 1259-1274. https://doi.org/10.1016/S0008-8846(98)00107-0
  24. Copeland, L. E. and Kantro, D. L., "Hydration of Portland cement," 5th International Symposium on the Chemistry of Cement, Vol. 2, 1968, pp. 378-420.
  25. Narayanan, N., "Quantifying the effects of hydration enhancement and dilution in cement pastes containing coarse glass powder," Journal of Advanced Concrete Technology, Vol. 6, No. 3, 2008, pp. 397-408. https://doi.org/10.3151/jact.6.397
  26. De Schutter, G., "Effect of limestine filler as mineral addition in self-compacting concrete," in Proceedings of the 36th Conference on Our World in Concrete & Structures, 2011, http://cipremier.com/100036006.
  27. Escalante, J. I., Gomez, L. Y., Johal, K. K., Mendoza, G., Mancha, H., and Mendez, J., "Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions," Cement and Concrete Research, Vol. 31, 2001, pp. 1403-1409. https://doi.org/10.1016/S0008-8846(01)00587-7
  28. Yin, J., Kang, X., Qin, C., and Feng, B., "Modeling of $CaCO_3$ decomposition under $CO_2$/$H_2{O}$ atmosphere in calcium looping processes," Fuel Processing Technology, Vol. 125, 2014, pp. 125-138. https://doi.org/10.1016/j.fuproc.2014.03.036
  29. De Weerdt, K., Ben Haha, M., Le Saout, G., Kjellsen, K. O., Justnes, H., and Lothenbach, B., "Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash," Cement and Concrete Research, Vol. 41, 2011, pp. 279-291. https://doi.org/10.1016/j.cemconres.2010.11.014
  30. You, C. D., Hyun, S. H., and Song, J. T., "Rheological properties of cement paste containing ultrafine blastfurnace slag," Journal of the Korean Ceramic Society, Vol. 44, No. 8, 2007, pp. 430-436. https://doi.org/10.4191/KCERS.2007.44.8.430
  31. Ramezanianpour, A. A. and Malhotra, V. M., "Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume," Cement and Concrete Composites, Vol. 17, 1995, pp. 125-133. https://doi.org/10.1016/0958-9465(95)00005-W
  32. Korea Concrete Institute, New concrete engineering, Kimoondang, Seoul, 2011, 930pp.

Cited by

  1. Strength Development and Durability of High-Strength High-Volume GGBFS Concrete vol.3, pp.3, 2015, https://doi.org/10.14190/JRCR.2015.3.3.261
  2. on Early Strength of High Volume Slag Cement vol.28, pp.3, 2016, https://doi.org/10.4334/JKCI.2016.28.3.349
  3. A Study on the Properties of Concrete Mixed with Pozzolan Inorganic Polymer(PIP) Waterproof Admixture vol.31, pp.4, 2016, https://doi.org/10.14346/JKOSOS.2016.31.4.82