• 제목/요약/키워드: PEMFC 고분자전해질연료전지

검색결과 252건 처리시간 0.022초

고분자전해질연료전지용 판형막가습기 성능 평가 (Performance Evaluation of Plate Membrane Humidifier for PEMFC)

  • 고백균;박종철;임종구;권기욱;신현길;허태욱;조성백
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.88.2-88.2
    • /
    • 2010
  • 고분자전해질연료전지(PEMFC)의 성능은 고분자막의 이온전도도에 따라 큰 영향을 받으며 가습조건에 따라 연료의 수화정도에 비례하여 증가하는 경향을 보인다. 현재 고분자막을 가습하는 방법에는 여러 가지가 있는데, PEMFC에 많이 사용되고 있는 Bubbler 형태의 가습장치는 고온이 필요하며 가습 효율이 수동적인 단점을 가지고 있다. 이에 비해서 막을 이용한 가습방법은 스택의 냉각시스템을 이용하여 가습 시, 별도의 에너지가 필요하지 않다. 이에 본 연구에서는 비교적 저온에서도 가습 효율이 증대하고 시스템 간소화의 장점을 가진 막가습기를 제작하여 고분자전해질 연료전지에서 열 및 습도조절에 대한 효율성을 비교 연구하였다. 막가습기에 사용된 가습막의 두께에 따른 가습도 변화 및 유로 구조에 따른 압력강화를 관찰하였으며 막가습기를 판형 모듈 형태로 제작하여 고분자전해질연료전지에 적용하여 성능을 평가하였다.

  • PDF

튜브형 고분자전해질 연료전지와 일회용 수소발생소자를 결합한 미세유체소자용 전원공급소자 (Disposable Power Generator with Tubular PEMFC and H2 Generator for the Power Source of Microfluidic Devices)

  • 김광호;서영호;김병희
    • 대한기계학회논문집A
    • /
    • 제34권7호
    • /
    • pp.829-835
    • /
    • 2010
  • 본 연구에서는 미세유체소자의 전원소자로 적용하기 위한 일회용 수소발생소자와 튜브형 고분자전해질 연료전지로 구성된 일회용 전원소자에 관한 것이다. 튜브형 고분자전해질 연료전지는 1.52 mm의 직경을 가지며, 수소발생소자는 알루미늄과 5M 수산화나트륨의 반응을 통해 수소를 발생시켜 튜브형 고분자전해질 연료전지로 공급하게 된다. 단위 튜브형 고분자전해질 연료전지는 순수한 수소에 대해여 0.81V 의 개방전압과 0.35V에서 $16.4\;mW/cm^2$의 최대전력밀도를 나타내었으며, 수소발생기는 15 분 동안 $11.6\;m{\ell}$의 수소를 생성하였다. 튜브형 고분자전해질 연료전지와 수소발생기가 결합된 일회용 전원소자는 아무런 주변장치 없이 10 분 동안 1.06 mW (0.46V)의 일정한 전력을 발생하였으며, 3 개가 직렬로 연결된 고분자전해질 연료전지는 10 분 동안 LED(2.5 mW@1.8V)를 동작시켰다.

수 ㎾급 고분자전해질 연료전지 스택의 운전특성 (Operational Characteristics of the Multi-㎾ Class PEMFC Stack)

  • 심중표;오인환;하흥용;최형준;안상열;홍성안;임태원
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1999년도 추계 학술발표회 논문집
    • /
    • pp.95-100
    • /
    • 1999
  • 고분자전해질 연료전지 (polymer electrolyte membrane fuel cell, PEMFC)는 다른 형태의 연료전지에 비하여 전류밀도가 크고 구조가 간단하며 전해질의 누출이나 손실의 염려가 없어 수송용 무공해 차량의 동력원으로서 적합한 시스템이다. 또한 빠른 시동과 응답특성, 우수한 내구성을 가지고 있고 연료로 수소 이외에 메탄올이나 천연가스를 개질하여 사용할 수 있다는 장점이 있다.(중략)

  • PDF

고온형 고분자전해질연료전지용 MEA 개발 및 응용 (Development and Application of High Temperature Proton Exchange Membrane Fuel Cells)

  • 임태훈;김형준
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.439-445
    • /
    • 2007
  • Proton exchange membrane Fuel Cells(PEMFCs) have been spotlighted because of their broad potential application for potable electrical devices, automobiles and residential usages. However, their utilization is limited to low temperature operation due to the electrolyte dehydration at high temperature. High temperature PEMFC operation offers high CO tolerance and easy water management. This review presents development of high temperature($120{\sim}200^{\circ}C$) PEMFC. Especially, PEMFC which is based on acid-doped PBI membrane is discussed.

수정된 폴리올법으로 합성된 Pt/C를 이용한 산소환원반응성 및 고분자전해질 연료전지 성능 연구 (A Study on Catalytic Activity of Oxygen Reduction Reaction and Performance of PEMFC using Pt/C Synthesized by Modified Polyol)

  • 양종원;추천호;권용재
    • 에너지공학
    • /
    • 제23권3호
    • /
    • pp.157-162
    • /
    • 2014
  • 해당 연구에서는 수정된 폴리올법을 이용하여 합성한 카본블랙 탄소지지체의 Pt촉매의 전기적, 전기화학적 특성을 평가하였다. 또한 Polyol_Pt/C 촉매는 고분자전해질연료전지의 공기극에 적용하여 산소환원반응성을 측정하였다. 산소환원반응성과 고분자전해질연료전지 성능평가를 통해 상용 Pt/C (JM_Pt/C)촉매와 비교하여 전기화학적인 촉매성능을 비교하였다. 촉매의 활성표면적을 구하기 위해 순환전압전류주사법을 이용하였고, 산소환원반응성을 측정하기 위해 회전원판전극으로 선형주사전류법을 이용하였다. 또한 고분자전해질연료전지 완전지 성능 측정을 진행하였다. 그 결과 Polyol_Pt/C 촉매의 활성표면적 ($196m^2g^{-1}$)은 JM_Pt/C 촉매의 그 값 ($183m^2g^{-1}$) 보다 우수하였다. 촉매들의 산소환원반응성에 경우에도 Polyol_Pt/C 촉매는 JM_Pt/C 촉매보다 우수한 반파장전위 및 한계전류밀도를 나타내었다. 또한 완전지 평가시, MEA 공기극을 위한 Polyol_Pt/C 촉매 담지량을 기존의 0.4에서 0.15로 줄였을 때, 성능저하가 적게 나타났고, 300시간의 장기간 성능 평가에서도 연료전지 성능이 거의 일정하게 유지되었다. 이를 토대로 수정된 폴리올법에 의해 합성된 Polyol_Pt/C 촉매는 경제적인 이용 및 우수한 내구성을 가지고 있음을 밝혀내었다.

운전 정지 시 보관방법이 고분자 전해질 연료전지의 열화에 미치는 영향 I. 잔류 수소 제거 방법의 영향 (Effects of Shut-down Process on Degradation of Polymer Electrolyte Membrane Fuel Cells I. Effects of Hydrogen Removal on the Degradation)

  • 임상진;조은애;이상엽;김형준;임태훈;이관영
    • 전기화학회지
    • /
    • 제9권3호
    • /
    • pp.118-123
    • /
    • 2006
  • 반복적인 작동/멈춤에 의해 고분자전해질 연료전지의 성능 감소가 촉진되며, 이는 연료전지 자동차의 상용화를 위해 반드시 해결되야 한다. 고분자전해질 연료전지 스택의 운전을 정지했을 때 연료극 유로에는 수소가, 공기극 유로에는 공기가 남아 있어 연료전지가 열림회로 전위 상태에 한동안 유지되며 이로 인해 촉매의 소결이 촉진되고 과산화수소 라디칼이 형성되어 전해질를 분해시키는 것으로 보고되고 있다. 본 연구에서는 반복적인 작동/멈춤이 따라 고분자전해질 연료전지의 성능 감소와 막-전극 접합체의 특성에 미치는 영향을 조사하고, 운전 정지 시 잔존 수소를 제거함으로써 연료전지 스택의 내구성을 향상시키는 방법을 제안하였다.

200W급 고분자전해질 연료전지의 운전 특성 (Operation Characteristics of the 200W PEMFC stack)

  • 최형준;조성아;오인환;임태훈;홍성안
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1998년도 춘계 학술발표회 논문집
    • /
    • pp.265-269
    • /
    • 1998
  • 고분자전해질 연료전지는 다른 형태의 연료전지에 비하여 전류밀도가 크고 10$0^{\circ}C$ 미만의 온도에서 작동되며 구조가 간단하여 수송용 무공해 차량의 동력원으로서 아주 적합한 시스템이다. 또한 빠른 시동과 응답특성, 우수한 내구성을 가지고 있고 연료로 수소 이외에도 메탄올이나 천연가스를 개질하여 사용할 수 있다는 장점이 있다. (중략)

  • PDF

2차원 정상상태 모델을 이용한 고분자전해질형 연료전지의 수소 재순환의 영향 (Effect of hydrogen recirculation in PEM fuel cell with 2D steady-state model)

  • 정현석;하태정;김효원;조성우;한종훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.209-212
    • /
    • 2007
  • 고분자전해질형 연료전지의 구조 및 구성품의 물성에 따른 성능 및 물이동 현상에 관해서 많은 연구가 진행되고 있다, 이들 연구는 대체적으로 연료 전지의 BOP(Balance of plant)를 포함하는 연료전지 시스템에 관한 연구 보다는 단위 전지 및 스택에 관한 연구에 국한되어 왔다. 연료전지의 시스템에 관한 연구들 또한 세부적인 연료전지 내부의 거동에 대해서는 고려하지 않고 있었다. 이는 연료전지의 상세 모델을 이용해 연료전지 시스템에 대해 접근하기 보다는 시스템의 성능 및 동특성에 대한 연구가 주를 이루었기 때문으로 생각된다. 본 연구에서는 연료전지 음극의 수소 배출가스를 재순환할 경우 연료전지 내부에서의 거동에 미치는 영향에 대해 2차원 정상상태 모델을 이용하여 분석해 보았다. 또한 재순환된 수소에 의한 연료전지 내부 거동의 변화 및 수소 이용율 상승 효과를 연료 전지 성능과 함께 비교해 보았다 이를 위해 2차원 정상상태 모델을 개발하였고 이를 실험을 통해 검증하는 작업을 수행하였다. 여기에 사용된 연료전지 모델은 Gore社 의 $PRIMea^{(R)}$을 사용한 연료전지의 성능을 잘 예측하고 내부의 유동 및 물이동 현상에 관한 정보를 제공한다. 이는 여러 하이브리드 자동차용 연료전지 시스템이 연료전지 배출가스의 재순환을 고려하고 있는 상황에서 연료전지 작동 조건의 최적화에 유용한 정보를 제공 할 수 있다는 의의를 가진다.

  • PDF

kW급 고분자전해질 연료전지 스택의 운전 특성 (Operation Characteristics of the kW-class PEMFC Stack)

  • 최형준;안상렬;조성아;하홍용;오인환;홍성안;임태원
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1999년도 춘계 학술발표회 논문집
    • /
    • pp.239-244
    • /
    • 1999
  • 고분자전해질 연료전지는 다른 형태의 연료전지에 비하여 전류밀도가 크고 구조가 간단하며 전해질의 누출이나 손실의 염려가 없어 수송용 무공해 차량의 동력원으로서 아주 적합한 시스템이다. 또한 빠른 시동과 응답특성, 우수한 내구성을 가지고 있고 연료로 수소 이외에도 메탄올이나 천연가스를 개질하여 사용할 수 있다는 장점이 있다 [1, 2]. 고분자전해질 연료전지는 원래 우주선, 군사용 등 특수 목적으로 사용되던 것이 1980년대 말에 이르러 도심지 대기오염을 저감시키기 위한 전기 자동차의 동력원 및 이동용 전원으로 사용될 것이 기대됨에 따라 전세계적으로 다시 연구 개발의 활기를 찾게 되었다.(중략)

  • PDF