DOI QR코드

DOI QR Code

Microstructural Realization of SD400 Rebar by Developing Tempcore Simulation Apparatus

템프코어 냉각모사 장치 개발을 통한 SD400 철근 미세조직 구현

  • 박춘수 (동국제강(주) 중앙기술연구소) ;
  • 이향준 (동국제강(주) 중앙기술연구소) ;
  • 배세욱 (동국제강(주) 중앙기술연구소) ;
  • 김길수 (동국제강(주) 중앙기술연구소)
  • Received : 2015.01.12
  • Accepted : 2015.03.21
  • Published : 2015.05.01

Abstract

The cooling process referred to as Tempcore has been applied to produce a high-strength rebar. Excellent rebar with strength and weldability can be manufactured from mild steel without the addition of alloying elements by using the Tempcore process. However, there are limitations to evaluating the effect of various chemical compositions and cooling conditions within a site facility. In this study, we developed an apparatus to simulate the Tempcore process and obtained microstructures with a hardened surface layer, an intermediate region and a soft inner core. The experimental apparatus has been equipped with a cooler set that is the same as the site facility and consists of a pump line that supplies pressure of 12-13 bar and flow rate of up to $50m^3/h$. In accordance with the simulation result of steel grade SD400 that requires more than 400 MPa of yield strength, both the hardened area ratio and the hardness with respect to each cooling depth were found to agree well with the product.

고강도 철근을 생산하기 위해서는 템프코어(Tempcore)라고 불리는 냉각 공정이 적용되고 있는데, 템프코어를 이용하면 합금원소를 첨가하지 않고 Mild steel 로부터 강도 및 용접성이 우수한 철근을 생산 할 수 있다. 하지만 현장 설비를 이용하여 다양한 냉각 조건과 화학성분 변경의 영향을 평가하기에는 한계가 있다. 따라서, 본 연구에서는 템프코어 공정을 모사하기 위한 장치를 개발하였으며, 이를 이용하여 경화된 표층부, 중간영역, 연한 내부 조직으로 이루어진 템프코어 조직을 구현하였다. 실험장치는 현장 설비와 동일한 Cooler 1 기가 장착되었고, 12~13 bar 의 압력과 최대 $50m^3/h$의 유량을 공급하는 펌프라인으로 구성되어 있다. 항복강도를 기준으로 400 MPa 이상을 요구하는 강종인 SD400 모사 결과 경화층 면적비 및 냉각 깊이 별 경도가 제품과 잘 일치함을 알 수 있었다.

Keywords

References

  1. Simon, P., Economopoulos, M. and Nilles, P., 1984, "Tempcore: A New Process for the Production of High Quality Reinforcing Bars," Iron Steel Eng., Vol. 61, No. 3, pp. 53-57.
  2. Economopoulos, M., Respen, Y., Lessel, G. and Steffes, G., 1975, "Application of the Tempcore Process to the Fabrication of High Yield Strength Concrete-reinforcing Bars," Metall Rep CRM It, Vol. 45, pp. 1-17.
  3. Cadoni, E., Dotta, M., Forni, D., Tesio, N. and Albertini, C., 2013, "Mechanical Behavior of Quenched and Self-tempered Reinforcing Steel in Tension Under High Strain Rate," Materials and Design, Vol. 49, pp. 657-666. https://doi.org/10.1016/j.matdes.2013.02.008
  4. Nino, O., Martinez, D., Lizcano, C., Guerrero-Mata, M. and Colas, R., 2007, "Study of the Tempcore Process for the Production of High Resistance Reinforcing Rods," Materials Science Forum, Vol. 537-538, pp. 533-540. https://doi.org/10.4028/www.scientific.net/MSF.537-538.533
  5. Kumar, A., Rao, M.H. and Singhal, L.K., 2006, "Optimization of Process Parameters During Quenching and Self Tempering of Rebars Using Mathematical Model," Trans. Indian Inst. Met., Vol. 59, No. 3, pp. 407-421.
  6. Cetinel, H., Toparli, M. and Ozsoyeller, L., 2000, "A Finite Element Based Prediction of the Microstructural Evolution of Steels Subjected to the Tempcore Process," Mechanics of Materials, Vol. 32, pp. 339-347. https://doi.org/10.1016/S0167-6636(00)00009-0
  7. Cetinel, H., Ozyigit, H.A. and Ozsoyeller, L., 2002, "Artificial Neural Networks Modeling of Mechanical Property and Microstructure Evolution in the Tempcore Process," Computers & Structures, Vol. 80, pp. 213-218. https://doi.org/10.1016/S0045-7949(02)00016-0
  8. Shin, J., Park, S., Lee, J., Lee, Y. and Jang, B., 2000, "The Production Technology of Steel Bars by Direct Quenching and Self Tempering," J. Kor. Inst. Met. & Mater., Vol. 38, No. 7, pp. 957-962.