• 제목/요약/키워드: Hardened Layer

Search Result 112, Processing Time 0.024 seconds

Estimation of Hardened Layer Dimensions Using Multi-Point Temperature Monitoring in Laser Surface Hardening Processes (레이저 표면 경화 공정에서 다점 온도 모니터링을 통한 경화층 크기 예측)

  • 우현구
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1048-1054
    • /
    • 2003
  • In laser surface hardening processes, the geometrical parameters such as the depth and the width of a hardened layer can be utilized to assess the hardened layer quality. However, accurate monitoring of the geometrical parameters for on-line process control as well as for on-line quality evaluation is very difficult because the hardened layer is formed beneath a material surface and is not visible. Therefore, temperature monitoring of a point of specimen surface has most frequently been used as a process monitoring method. But, a hardened layer depends on the temperature distribution and the thermal history of a specimen during laser surface hardening processing. So, this paper describes the estimation results of the geometric parameters using multi-point surface temperature monitoring. A series of hardening experiments were performed to find the relationships between the geometric parameters and the measured temperature. Estimation results using a neural network show the enhanced effectiveness of multi-point surface temperature monitoring compared to one-point monitoring.

Magnetic field distribution in steel objects with different properties of hardened layer

  • Byzov, A.V.;Ksenofontov, D.G.;Kostin, V.N.;Vasilenko, O.N.
    • Advances in Computational Design
    • /
    • v.7 no.1
    • /
    • pp.57-68
    • /
    • 2022
  • A simulation study of the distribution of magnetic flux induced by a U-shaped electromagnet into a two-layer massive object with variations in the depth and properties of the surface layer has been carried out. It has been established that the hardened surface layer "pushes" the magnetic flux into the bulk of the magnetized object and the magnetic flux penetration depth monotonically increases with increasing thickness of the hardened layer. A change in the thickness and magnetic properties of the surface layer leads to a redistribution of magnetic fluxes passing between the poles of the electromagnet along with the layer and the bulk of the steel object. In this case, the change in the layer thickness significantly affects the magnitude of the tangential component of the field on the surface of the object in the interpolar space, and the change in the properties of the layer affects the magnitude of the magnetic flux in the magnetic "transducer-object" circuit. This difference in magnetic parameters can be used for selective testing of the surface hardening quality. It has been shown that the hardened layer pushes the magnetic flux into the depth of the magnetized object. The nominal depth of penetration of the flow monotonically increases with an increase in the thickness of the hardened layer.

A Study on 40Cr Alloy steel of Laser Surface Hardening (40Cr 강의 Laser Surface Hardening 에 관한 연구)

  • Ryu, Nung-Hee;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.1001-1005
    • /
    • 2001
  • In this study, the surface of 40Cr steel was hardened by $CO_2$Laser, and then the microstructural transformations and the hardness distributions of the laser surface hardened layer were observed. The experimental results showed the surface hardening layer was consisted of three parts, which is outmost surface layer of needle martensite, middle layer of martensite and remained pearlite, and transitory boundary layer. In hardness distributions, the surface hardeness of the surface hardening layer had Hv 800~1000, that was 2 to 4 times of matrix's hardness. The hardeness distribution of laser hardening layer that of surface layer hardened by general heat treatment.

  • PDF

Laser Direct Patterning of Photoresist Layer for Halftone Dots of Gravure Printing Roll (그라비아 인쇄물의 망점 형성을 위한 포토레지스터 코팅층의 레이저 직접 페터닝)

  • Seo, Jung;Lee, Je-Hoon;Han, Yu-Hee
    • Laser Solutions
    • /
    • v.3 no.2
    • /
    • pp.35-43
    • /
    • 2000
  • Laser direct patterning of the coated photoresit (PMER-NSG31B) layer was studied to make halftone dots on gravure printing roll. The selective laser hardening of photoresist by Ar-ion laser(wavelength : 333.6nm∼363.8nm) was controlled by the A/O modulator. The coating thickness in the range of 5㎛∼11㎛ could be obtained by using the up-down directional moving device along the vertically located roll. The width, thickness and hardness of the hardened lines formed under laser power of 200∼260㎽ and irradiation time of 4.4∼6.6$\mu$ sec/point were investigated after developing. The hardened width increased according to the increase of coating thickness. Though the hardened thickness was changed due to the effect of the developing solution, the hardened layer showed good resistance to the scratching of 2H pencil. Also, the hardened minimum line widths of 10㎛ could be obtained. The change of line width was also found after etching, and the minimum line widths of 6㎛ could be obtained. The hardened lines showed the good resistance to the etching solution. Finally, the experimental data could be applied to make gravure halftone dots using the developed imaging process, successfully.

  • PDF

Gravure Halftone Dots by Laser Direct Patterning

  • Jeong Suh;Lee, Jae-Hoon
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.26-32
    • /
    • 2002
  • Laser direct patterning of the coated photoresist (PMER-NSG31B) layer was studied to make halftone dots on the gravure printing roll. The selective laser hardening of the photoresist by Ar-ion laser(wavelength: 333.6∼363.8 nm) was controlled by the A/O modulator. The coating thickness in the range of 5∼11㎛ could be obtained by using the up-down directional moving device along the vertically located roll. The width, thickness and hardness of the hardened lines farmed under the laser power of 200∼260mW and irradiation time of 4.4∼6.6 $\mu$ sec/point were investigated after developing. The hardened width increased as the coating thickness increased. Though the hardened thickness was changed due to the effect of the developing solution, the hardened layer showed good resistance to the scratching of 2H pencil. Also, the hardened minimum line width of 10㎛ could be obtained. The change of line width was also found after etching, and the minimum line widths of 6㎛ could be obtained. The hardened lines showed the good resistance to the etching solution. Finally, the experimental data could be applied to make gravure halftone dots using the developed imaging process, successfully.

A Study on Surface Case Hardening of Blend Heat Treated Mild Steel (복합열처리(複合熱處理)한 연강(軟鋼)의 표면경화(表面硬化)에 관한 연구)

  • Chung, In-Sang;Chon, Hae-Dong;Sin, Soug-Mok
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.1
    • /
    • pp.23-31
    • /
    • 1992
  • It is investigated that Fe-C-N compound layer, defusion layer, and induction hardened layer produced by nitrocarburizing blend heat treatment in austenitic temperature with high frequency induction heating of mild steel specimen sprayed sursulf salt-bath. As the temperature of blend-heat treatment got increased, the thickness and hardness of compound layer and diffusion layer were increased. Compound layer(max. $35{\mu}m$), diffusion layer (max. 2.5mm) and induction hardened layer were gained in the shortest time 10 sec and in the case of $1000^{\circ}C$ total hardness depth of those was about 3.5mm. When the blend-heat treated specimen was reheated, maximum hardness of compound layer was dropped more than that of the reheated compound layer after sursulf treated, whereas hardness of diffusion layer was increased.

  • PDF

Propagation Characteristics of Ultrasonic Wave of Surface Hardened SCM440 and SCM415 Steels (SCM440, SCM415강의 표면강화에 따른 초음파의 전파특성)

  • Park, Eun-Su;Gang, Gye-Myeong;Kim, Seon-Jin;Jang, Sun-Sik
    • Korean Journal of Materials Research
    • /
    • v.3 no.5
    • /
    • pp.538-545
    • /
    • 1993
  • By using propagation characteristics of ultrasonic surface wave, the depth of the surface hardened layer of SCM440 steel with different high frequency induction heat treatments was measured and the same was done on the carburized SCM415 steel. The propagation velocity of surface wave was constant and independent of frequency in t.he specimens with identical microstructure, it was, however, decreased by 59m/s in the hardened layers compared to the unhardened part. From t.he relationship between the effective case depth and the wave length of surface wave, the depth of the hardened layer could be measured and evaluated nondestructively for both induction hardened and carburized steels.

  • PDF

The Influence of Treatment Condition During Low Temperature Plasma Carburizing of AISI304L Stainless Steel (AISI304L 강에 저온 플라즈마침탄 처리 시 처리조건에 따른 표면특성평가)

  • Lee, In-Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.56-60
    • /
    • 2011
  • A low temperature plasma carburizing process was performed to AISI 304L austenitic stainless steel to achieve the enhancement of surface hardness without a compromise in their corrosion resistance. Attempts were made to investigate the influence of the processing temperatures on the surface-hardened layer during low temperature plasma carburizng in order to obtain the optimum processing conditions. The expanded austenite (${\gamma}C$) was formed on all the treated surfaces. Precipitates of chromium carbides were detected in the hardened layer (C-enriched layer) only for the specimen treated at $500^{\circ}C$. The hardened layer thickness of ${\gamma}C$ increased up to about $35\;{\mu}m$, with increasing treatment temperature. The surface hardness reached about 1000 $HK_{0.05}$, which is about 4 times higher than that of the untreated sample (250 $HK_{0.05}$). Minor loss in corrosion resistance was observed for the specimens treated at temperatures of $310^{\circ}C-450^{\circ}C$ compared with untreated austenitic stainless steel. Particularly, the precipitation of chromium carbides at $500^{\circ}C$ led to a significant decrease in the corrosion resistance.

Carburizing Behavior of AISI 4115 Steel with a Flow Rate of Acetylene and Specimen Location in an 1 ton-class Mass Production-type Vacuum Carburizing Furnace (1 톤급 양산형 진공 침탄로에서 아세틸렌 유량과 로 내 위치에 따른 AISI 4115 강의 침탄 거동)

  • Kwon, Gi-hoon;Moon, Kyoungil;Park, Hyunjun;Lee, Young-Kook;Jung, Minsu
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.6
    • /
    • pp.272-280
    • /
    • 2021
  • The influence of acetylene flow rates on the carburizing behavior of an AISI 4115 steel in 1 ton-class mass production-type vacuum carburizing furnace has been studied through microstructure, carbon concentration, hardness analyses. The AISI 4115 steels were carburized with various flow rates (20, 32.7, 60 l/min) and locations in the furnace (top, center, bottom) at 950℃. The acetylene flow rate played an important role in controlling the carburizing properties of carburized samples, such as effective case depth and uniformity carburizing according to location in the furnace. At an acetylene flow rate of 20 l/min, the carburized samples had a shallow average hardened layer (0.645 mm) compared to the target hardening depth (1 mm) due to low carbon flux and spatial uniformity of carburization (17.8%) in the furnace. At a flow rate of 60 l/min, the carburized samples showed an average hardened layer (1.449 mm) deeper than the target hardening depth and had the spatial uniformity of carburization (98.8%). In particular, at a flow rate of 32.7 l/min, the carburized samples had an average hardened layer (1.13 mm) close to the target hardening depth and had the highest carburizing uniformity (99.1%). As a result, an appropriate flow rate of 32.7 l/min was derived to satisfy the target hardening depth and to have spatial uniform hardened layer in the furnace.

A study on the surface integrity of machined surface layer in machining hardened STD11 steel (경화처리된 합금공구강의 절삭에서 가공 표면층의 표면성상에 관한 연구)

  • Noh, Sang-Lai;An, Sang-Ook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.5
    • /
    • pp.153-160
    • /
    • 1994
  • In this study, residual stress and surface roughness were investigated experimentally to evaluate surface integrity on surface layer machined by CBN, ceramics and WC cutting tools. When machining difficult-to-cut material (hardened STD11 steel $H_{R}$C 60), residual stresses remaining in machined surface layer were mainly compressive. The increase of flank wear caused a shift of the compressive residual stress maximum to greater workpiece depths, but the changes did not penetrate the workpiece beneath a depth of 300 .mu. m. Surface roughness was influenced considerably by variations of the cutting speed and feed. In machining hard material, CBN and A1$_{2}$ $O_{3}$ ceramics cutting tool materials proved significantly superior to mixed ceramics A1$_{2}$ $O_{3}$-TiC and WC in evaluation of surface integrity.y.

  • PDF