DOI QR코드

DOI QR Code

다종 센서 융합의 신뢰성 향상을 통한 쿼드로터 자세 제어

Attitude Control of Quad-rotor by Improving the Reliability of Multi-Sensor System

  • 유동현 (전북대학교 전자공학부) ;
  • 박종호 (서남대학교 전기전자공학과) ;
  • 류지형 (한국전자통신연구원 호남권연구센터) ;
  • 정길도 (전북대학교 전자공학부)
  • Yu, Dong Hyeon (School of Electronic Engineering, Chon-buk Nat'l Univ.) ;
  • Park, Jong Ho (Dept. of Electrical & Electronic Engineering, Seonam Univ.) ;
  • Ryu, Ji Hyoung (Electronics and Telecommunications Research Institute, ETRI) ;
  • Chong, Kil To (School of Electronic Engineering, Chon-buk Nat'l Univ.)
  • 투고 : 2014.10.13
  • 심사 : 2015.02.16
  • 발행 : 2015.05.01

초록

본 논문은 쿼드로터 자세제어의 신뢰성 향상을 목적으로 다종 센서 구성 및 다종 센서 데이터 융합 알고리즘 적용을 연구한 결과이다. 먼저, 쿼드로터에 대한 동역학적 모델링에 관한 수식을 도출하였으며, 획득된 수식을 기초로 쿼드로터에 대한 수학적 모델링을 진행하였고 이를 기반으로 신뢰성이 향상된 다종 센서 데이터를 입력으로 하는 컴퓨터 시뮬레이션을 수행하였다. 쿼드로터 자세제어를 위해 다종 센서 데이터의 신뢰성 향상이 필요했으며 이를 위해 다종 센서 데이터 입력에 대한 칼만 필터링를 진행하였고, 이후 쿼드로터의 수학적 모델링에 적용하여 오차를 보상토록 하였다. 관련 컴퓨터 시뮬레이션 결과를 실제 쿼드로터 시스템에 적용하기 위하여 쿼드로터를 짐벌에 장착한 실제 시스템을 구성하였고 이후 쿼드로터를 호버링 상태에서 사용자가 요구하는 각도 변화에 따른 실험을 수행하였다. 실제 실험을 통한 쿼드로터 자세제어 데이터를 산출하였으며, 이를 바탕으로 추가적인 컴퓨터 시뮬레이션을 통한 설계한 다종 센서 및 쿼드로터 자세 제어 시스템의 성능 검증을 진행하였다.

This paper presents the results of study for improving the reliability of quadrotor attitude control by applying a multi-sensor along with a data fusion algorithm. First, a mathematical model of the quadrotor dynamics was developed. Then, using the quadrotor mathematical model, simulations were performed using the improved reliability multi-sensor data as the inputs. From the simulation results, we designed a Gimbal-equipped quadrotor system. With the quadrotor in a hover state, we performed experiments according to the angle change of the user's specifications. We then calculated the attitude control data from the actual experimental data. Furthermore, with additional simulations, we verified the performance of the designed quadrotor attitude control system with multiple sensors.

키워드

참고문헌

  1. Byeon, S. M., Lee, K. M. and Yoon, S. H., 2013, "An Autonomous Navigation Algorithm for Quadcopter Using Multiple Seonsors," Korean Engineering-Art Institute Journal, Vol. 5, No. 1.
  2. Goel, R., Shah, S. M., Gupta, N. K. and Ananthkrishnan, N., 2009, "Modeling, Simulation and Flight Testing of an Autonomous Quadrotor," Proceedings of ICEAE 2009.
  3. Salazar-Cruz, S. and Lozano, R., 2005 "Stabilization and Nonlinear Control for a Novel Trirotor Mini-aircarft," 2005 IEEE International Conference on Robotics and Automation, pp.2612-2617.
  4. Kim, H., Jeong, S. H., Chong, K. T. and Lee, D. J., 2014, "Dynamic Modeling and Control Techniques for Multi-Rotor Flying Robots" Trans. Korean Soc. Mech. Eng. A, Vol. 38, No. 2, pp. 137-148. https://doi.org/10.3795/KSME-A.2014.38.2.137
  5. Yun, H. J., Choi, H. Y. and Lee, J. S., 2014, "CFD-based Thrust Analysis of Unmanned Aerial Vehicle in Hover Mode : Effects of Single Rotor Blade Shape," Trans. Korean Soc. Mech. Eng, A, Vol. 38, No. 5, pp. 513-520. https://doi.org/10.3795/KSME-A.2014.38.5.513
  6. Chowdhary, G. and Jategaonkar, R., 2006, "Aerodynamic Parameter Estimation rom Flight Data Applying Extended and Unscented Kalman Filter," DLR Institute for Flight System, Braunschweig, Germany, AIAA 2006-6146.
  7. Wan, E. A. and van der Merwe, R., 2000, "The Unscented Kalman Filter for Nonlinear Estimation" IEEE Symposium 2000.
  8. Abas, N., Legowo, A. and Akmeliawati, R., 2011, "Parameter Identification of and Autonomous Quadrotor," International Conference on Mechatronics (ICOM).
  9. Lee, K. U., Yun, Y. H., Chang, W., Park, B. J. and Choi, H. Y., 2011, "Modeling and Controller Design of Quadrotor UAV," KIEESummer Conference 2011.

피인용 문헌

  1. Performance Enhancement of the Attitude Estimation using Small Quadrotor by Vision-based Marker Tracking vol.25, pp.5, 2015, https://doi.org/10.5391/JKIIS.2015.25.5.444
  2. Geomagnetic Sensor Compensation and Sensor Fusion for Quadrotor Heading Direction Control vol.53, pp.7, 2016, https://doi.org/10.5573/ieie.2016.53.7.095