DOI QR코드

DOI QR Code

다이아몬드 배열 무전해 니켈 도금층/무산소동 기판의 열전도도 특성

Thermal Properties of Diamond Aligned Electroless Ni Plating Layer/Oxygen Free Cu Substrates

  • 정다운 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 김송이 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 박경태 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 서석준 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 김택수 (한국생산기술연구원 한국희소금속산업기술센터) ;
  • 김범성 (한국생산기술연구원 한국희소금속산업기술센터)
  • Jeong, Da-Woon (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kim, Song-Yi (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Park, Kyoung-Tae (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Seo, Seok-Jun (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kim, Taek Soo (Korea Institute for Rare Metals, Korea Institute of Industrial Technology) ;
  • Kim, Bum Sung (Korea Institute for Rare Metals, Korea Institute of Industrial Technology)
  • 투고 : 2015.04.19
  • 심사 : 2015.04.23
  • 발행 : 2015.04.28

초록

The monolayer engineering diamond particles are aligned on the oxygen free Cu plates with electroless Ni plating layer. The mean diamond particle sizes of 15, 23 and $50{\mu}m$ are used as thermal conductivity pathway for fabricating metal/carbon multi-layer composite material systems. Interconnected void structure of irregular shaped diamond particles allow dense electroless Ni plating layer on Cu plate and fixing them with 37-43% Ni thickness of their mean diameter. The thermal conductivity decrease with increasing measurement temperature up to $150^{\circ}C$ in all diamond size conditions. When the diamond particle size is increased from $15{\mu}m$ to $50{\mu}m$ (Max. 304 W/mK at room temperature) tended to increase thermal conductivity, because the volume fraction of diamond is increased inside plating layer.

키워드

참고문헌

  1. C. Zweben: Adv. Mater. Process., 163 (2005) 33.
  2. C. Zweben: Power Electron Technol., 32 (2006) 40.
  3. H. B. Cho, Y. Tokoi, S. Tanaka, T. Suzuki, W. Jiang, H. Suematsu, K. Niihara and T. Nakayama: J. Mater. Sci., 46 (2011) 2318. https://doi.org/10.1007/s10853-010-5075-2
  4. J. S. Sin, K. T. Kim, S. H. Ko, D. J. Ahn and M. H. Kim: J. Korea Foundry Society, 33 (2013) 22 (Korean). https://doi.org/10.7777/jkfs.2013.33.1.022
  5. K. Chu, C. Jia, H. Guo and W. Li: Mater. Des., 45 (2013) 36. https://doi.org/10.1016/j.matdes.2012.09.006
  6. H. Bai, N. Ma, J. Lang and G. Zhu: J. Alloys Compo., 580 (2013) 382. https://doi.org/10.1016/j.jallcom.2013.06.027
  7. K. Raz and F. A. Khalid: J. Alloys Compod., 615 (2014) 111. https://doi.org/10.1016/j.jallcom.2014.06.139
  8. R. H. Zhy, J. Y. Miao, J. L. Liu, L. X. Chen, J. C. Guo, C. Y. hua, T. Ding, H. K. Lian and C. M. Li: Diam. Relat. Mater., 50 (2014) 55. https://doi.org/10.1016/j.diamond.2014.09.007
  9. K. P. FitzGerald, J. Nairn, G. Skennerton and A. Atrens: Corros. Sci., 48 (2006) 2480. https://doi.org/10.1016/j.corsci.2005.09.011
  10. H. B. Che: Electr. Electron Mater., 12 (1999) 37 (Korean).
  11. J. G. Ahn, D. J. Kim, T. H. Hoang, J. Y. Lee, I, K. lee and H. S. Chung: J. Korean Powder Metall. Inst., 11 (2004) 224 (Korean). https://doi.org/10.4150/KPMI.2004.11.3.224
  12. J. M. Jun, H. G Lee, M. H. Lee, H. N. Lee and J. Y Hur: Spring Confe. Proce. of Kor. Inst. Surf. Eng., (2011) 151 (Korean).
  13. S. Kim, C. S. Kwon, Y. S. Oh, S. M. Lee and H. T. Kim J. Korean Powder Metall. Inst, 19 (2012) 379 (Korean). https://doi.org/10.4150/KPMI.2012.19.5.379
  14. P. Mankowski, A. Dominiak, R. Domanski, M. J. Kruszewski and L. Ciupinski: J. Therm. Anal. Calorim., 116 (2014) 881. https://doi.org/10.1007/s10973-013-3604-3