DOI QR코드

DOI QR Code

정수장 슬러지 농축조 배출수의 망간 농도에 미치는 pH의 영향

Influence of pH on Mn Concentration of Effluent from Sludge Thickener of Water Treatment Plant

  • Kim, Younjung (Center for Instrumental Analysis, Andong National University) ;
  • Lee, Seungeun (Handong Industry Ltd.) ;
  • Baek, Seungcheol (Department of Civil Engineering, Andong National University) ;
  • Kim, Taeheui (Department of Advanced Materials Engineering, Andong National University)
  • 투고 : 2015.02.05
  • 심사 : 2015.04.07
  • 발행 : 2015.05.01

초록

정수공정 중에 응집된 망간은 슬러지 농축조에 체류하는 동안 재용출 되어 배출수의 망간 허용기준치를 초과하는 문제가 발생되고 있다. 본 연구에서는 정수공정 중에 슬러지 농축조 배출수의 pH를 조정함으로써 망간 농도에 미치는 pH의 영향에 대하여 연구하였다. 초기 pH 6.1에서는 응집된 슬러지로부터 망간이 재용출 되어 청정지역 배출 기준인 2mg/L를 초과하였으나 NaOH, KOH, CaO, $Ca(OH)_2$, $CaCO_3$ 등 알칼리 물질을 이용하여 pH를 상승시켰을 경우 망간 농도를 청정지역 배출 기준 이하로 낮출 수 있었다. 또한 알칼리성 물질로서 석회석 광산에서 선별과정 중 발생하는 폐석회석을 이용하여 정수장 슬러지의 망간 재용출을 억제할 수 있는 가능성을 확인하였다.

Manganese in sludge precipitated during water treatment might be soluble again in effluent from sludge thickener. If that happens, the manganese concentration of effluent from water treatment plant will exceed the limit for clean reservation. In this study the influence of pH on Mn concentration of effluent from sludge thickener of water treatment plant was investigated. When the pHs of sludge solutions increased with alkaline materials such as NaOH, KOH, CaO, $Ca(OH)_2$, $CaCO_3$, the Mn concentrations of sludge solutions decreased under the limit. The Mn concentration of effluent from sludge thickener could be controlled with waste limestones from beneficiation process at limestone mine as an alkaline material.

키워드

참고문헌

  1. Bamforth, S. M., Manning, D. A. C., Singleton, I., Younger, P. L. and Johnson, K. L. (2006), Manganese removal from mine waters - investigating the occurrence and importance of manganese carbonates, Applied Geochemistry, Vol. 21, No. 8, pp. 1274-1287. https://doi.org/10.1016/j.apgeochem.2006.06.004
  2. Bever, M. B. (1985), Encyclopedia of materials science and engineering, Pergamon Press, Elmsford, N.Y., pp. 2730-2731.
  3. Choi, I. G., Beak, I. H., Jeong, C. W., Lee, S. J. and Park, J. W. (2014), The aeration to improve manganese and chloroform of effluent at sludge thickener of the conventional water treatment plant, J. Kor. Environ. Eng., Vol. 36, No. 2, pp. 113-118 (in Korean). https://doi.org/10.4491/KSEE.2014.36.2.113
  4. Doula, M. (2006), Removal of $Mn^{2+}$ ions from drinking water by using clinoptilolite and a clinoptilolite-Fe oxide system, Water Research., Vol. 40, Issue 17, pp. 3167-3176. https://doi.org/10.1016/j.watres.2006.07.013
  5. Elsner, R. J. F. and Spangler, J. G. (2005), Neurotoxicity of inhaled manganese: public health danger in the shower?, Medical Hypotheses, Vol. 65, Issue 3, pp. 607-616. https://doi.org/10.1016/j.mehy.2005.01.043
  6. Emmanuel, K. A. and Veerabhadra Rao, A. (2009), Comparative study on adsorption of Mn(II) from aqueous solutions on various activated carbons, E-Journal Chem., Vol. 6, No. 3, pp. 693-704. https://doi.org/10.1155/2009/587159
  7. Gantzer, P. A., Bryant, L. D. and Little, J. C. (2009), Controlling soluble iron and manganese in a water-supply reservoir using hypolimnetic oxygenation, Water Research, Vol. 43, Issue 5, pp. 1285-1294. https://doi.org/10.1016/j.watres.2008.12.019
  8. Jusoh, A., Cheng, W. H., Low, W. M., Nora'aini, A. and Megat Mohd Noor, M. J. (2005), Study on the removal of iron and manganese in groundwater by granular activated carbon, Desalination, Vol. 182, No. 1-3, pp. 347-353. https://doi.org/10.1016/j.desal.2005.03.022
  9. Jung, S. W., Lee, J. P. and Kim, H. S. (2001), Removal of manganese by oxidation and filtration in water treatment, J. Kor. Soc. Environ. Eng., Vol. 23, No. 4, pp. 661-669 (in Korean).
  10. Kim, J. K., Jeong, S. G., Kim, J. S. and Park, S. J. (2005), Manganese removal in water treatment processes, J. Kor Soc Water Waste., Vol. 19, No. 5, pp. 595-604 (in Korean).
  11. Moon, Y. T, and Kim, B. G. (2006), Considering factors for operating residuals treatment facilities in water Treatment Plants, J. Kor. Soc. Water Waste., Vol. 20, No. 5, pp. 653-659 (in Korean).
  12. Silva, A. M., Cunha, E. C., Silva, F. D. R. and Leao, V. A. (2012), Treatment of high-manganese mine water with limestone and sodium carbonate, Cleaner Production, Vol. 20, No. 1, pp. 11-19.
  13. Taffarel, S. R. and Rubio, J. (2009), On the removal of $Mn^{2+}$ ions by adsorption onto natural and activated chilean zeolites, Mineral Engineering, Vol. 22, Issue 4, pp. 336-343. https://doi.org/10.1016/j.mineng.2008.09.007
  14. Tekerlekopoulou, A. G., Vasiliadou, I. A. and Vayenas, D. V. (2008), Biological manganese removal from potable water using trikling filters, Biochemical Engineering Journal, Vol. 38, Issue 3, pp. 292-301. https://doi.org/10.1016/j.bej.2007.07.016
  15. Yavuz, O., Altunkaynak, Y. and Guzel, F. (2003), Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite, Water Research, Vol. 37, Issue 4, pp. 948-952. https://doi.org/10.1016/S0043-1354(02)00409-8