DOI QR코드

DOI QR Code

Basic Properties of Alkali-activated Mortar With Additive's Ratio and Type of Superplasticizer

감수제 종류 및 첨가율 변화에 따른 알칼리 활성 모르타르의 기초적 특성

  • Han, Cheon-Goo (Department of Architectural Engineering, Cheongju University) ;
  • Chang, Ji-Han (Department of Architectural Engineering, Cheongju University)
  • Received : 2015.03.06
  • Accepted : 2015.03.27
  • Published : 2015.03.30

Abstract

Portland cement production is under critical review due to high amount of $CO_2$ gas released to the atmosphere. Attempts to increase the utilization of a by-products such as fly ash and ground granulated blast-furnace slag to partially replace the cement in concrete are gathering momentum. Many researchs on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. Instead, the sources of material such as fly ash, that are rich in Silicon(Si) and Aluminium(Al), are activated by alkaline liquids to produce the binder. Hence concrete with no cement is effect reduction of $CO_2$ gas. In this study, we investigated the influence of the fluidity, air content and compressive strength of mortar on alkaline activator in order to develop cementless fly ash and ground granulated blast-furnace slag based alkali-activated mortar with superplasticizer. In view of the results, we found out that Pn of fluidity and compressive strength is the best in four type of superplasticizer, and PNS of powder type of fluidity is better than that of liquid type in the case of AA.

본 연구는 알칼리 활성 모르타르를 활용하기 위한 기초적 연구로 보통 포틀랜드 시멘트 모르타르 및 알칼리 활성 모르타르에 감수제 종류 및 첨가율 변화를 적용하여 기초적인 특성을 파악하고자 하였는데, 그 결과를 요약하면 다음과 같다. 플로우의 경우 감수제 종류와 관계없이 치환율이 증가함에 따라 유동성이 향상되었으며, OPC-Pn의 경우는 플로우치가 크게 증가하는데 비해 AA의 경우는 증가량이 크지 않았으며, AA중에서는 AA-Pn이 가장 우수하였다. 한편, OPC 및 AA에 액상 및 분말형 Pn 첨가에 따른 플로우의 경우는 OPC 첨가율이 증가함에 따라 유동성이 증가하였으며, AA의 경우는 AA-PN-L(액상형)의 경우보다 AA-Pn-P(분말형)의 경우가 유동성이 개선되는 것으로 나타났다. 공기량은 OPC의 경우는 첨가율이 증가함에 따라 공기량 분포가 증가되었으며, AA는 변화가 없거나 감소하는 것으로 나타났다. 또한, OPC에 액상 및 분말형 Pn 첨가율에 따른 공기량은 0.3% 이상 첨가할 경우 공기량이 큰 폭으로 증가되었는데, AA의 경우는 첨가율에 따른 공기량 변화는 크지 않았다. 압축강도의 경우는 OPC에 비해 AA가 전반적으로 강도발현이 우수한 것으로 나타났고, 재령 및 첨가율이 증가함에 따라 강도가 저하 혹은 유사하였고, 특히 AA-Pn 1%의 경우가 가장 우수한 강도 값을 나타내었다. 이상을 종합하면 감수제 종류 변화에 따라서는 Pn의 경우가 유동성 및 강도적인 측면에서 가장 우수한 결과를 나타냄으로써, 알칼리 활성 모르타르의 혼화제로써 활용성이 양호한 것으로 판단된다.

Keywords

References

  1. A. Palomoa. (1999). Alkali-activated fly ashes: A cement for the future, Cement and Concrete Research, 29(8), 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  2. Bakhrev, T. (2002). Sulfate attack on alkali-activated slag concrete, Cement and Concrete Research, 32, 211-216. https://doi.org/10.1016/S0008-8846(01)00659-7
  3. Bijen, J. (1989). Alkali activated slag-fly ash cement, Fly ash, Silica fume, Slag and Natural Pozzolans in Concrete, Proc. 3rd Int. Conf. Trondheim, SP114-76, 1566-1578.
  4. Concrete Admixture-Cement. (1997). Korea Concrete Institute.
  5. Hong, S.K. (2013). Study on the property of geopolymer concrete with mineral admixtures, Ph.M Thesis, Sejong National University, Korea.
  6. J. Davidovits. (2005). Geopolymer chemistry tutorial, meterials of tutorial ,Saint Quentin, 26.
  7. Jung, P.J. (2007). Synthetic organic chemistry. Dongmyung Publisher.
  8. Jung, P.J. (2008). Polymer Synthesis Chemistry. Dongmyung Publisher.
  9. Koh, K.T. (2010). Properties of the Flowability and Strength of Cementless Alkali-Activated Mortar Using the Mixed Fly Ash and Ground Granulated Blast-Furnace Slag Journal of Korean Recycled Consturuction Resources Institute, 19(4), 114-121.
  10. Koh, K.T. (2011). Evaliation on the Shrinkage and Durability of Cementless Alkali-Activated Mortar, Journal of Korean Institute of Resources recycling, 20(3), 40-47. https://doi.org/10.7844/kirr.2011.20.3.040
  11. Koh, K.T. (2011). Flowability and Compressive Strength of Cementless Alkali-Activated Mortar Using Blast Furnace Slag, Journal of Korean Recycled Consturuction Resources Institute, 20(1), 63-71. https://doi.org/10.7844/kirr.2011.20.6.063
  12. Lee, J.H. (2001). Polymer Materials Chemistry. Samkwang Publisher.
  13. Min, K. (2007). Resistance of Alkali Activated Slag Cement Mortar to Sulfuric Acid Attack, Journal of the Korean Ceramic Society, 44(211), 633-638. https://doi.org/10.4191/KCERS.2007.44.1.633
  14. Smith, M.A. (1977). Slag/fly ash cement, World Cement Technology, 6, 223-233.
  15. Yoon, S.W. (2005). Synthesis and Application of Melamine-Type Superplasticizer at the Different Synthetic Conditions, Journal of the Concrete Institute of Korea, 17(5), 811-818. https://doi.org/10.4334/JKCI.2005.17.5.811
  16. Yoon, S.W. (2008) The Physical Fluidity Properties of Concrete ontaining Melamine and Naphthalene-type Superplasticizer, Proceedings of the Korea Concrete Institute, 20(1), 457-460.