DOI QR코드

DOI QR Code

Evidence for beneficial effects of vitamin E

  • Etsuo, Niki (Health Research Institute, National Institute of Advanced Industrial Science & Technology)
  • Received : 2015.01.22
  • Accepted : 2015.06.18
  • Published : 2015.09.01

Abstract

Oxidative stress and lipid peroxidation have been implicated in the pathogenesis of various diseases, including atherosclerosis and fatty liver diseases, and consequently the role of antioxidants in the prevention and treatment of such diseases has received much attention. In particular, the effects of vitamin E, the most important lipophilic radical-scavenging antioxidant, have been investigated extensively. Many in vitro, animal, and epidemiological studies have reported positive results, but large-scale randomized controlled intervention studies and meta-analyses have produced inconsistent and often disappointing results. In the present review article, the role and action of vitamin E are discussed, with consideration of the factors that determine the outcome of vitamin E treatment. Vitamin E should benefit subjects experiencing oxidative stress due to free radicals when administered at the correct time and for an appropriate duration.

Keywords

References

  1. Halliwell B, Gutteridge JM. Free Radicals in Biology and Medicine. 4th ed. Oxford: Clarendon Press, 2007.
  2. Sugamura K, Keaney JF Jr. Reactive oxygen species in cardiovascular disease. Free Radic Biol Med 2011;51:978-992. https://doi.org/10.1016/j.freeradbiomed.2011.05.004
  3. Niki E. Assessment of antioxidant capacity in vitro and in vivo. Free Radic Biol Med 2010;49:503-515. https://doi.org/10.1016/j.freeradbiomed.2010.04.016
  4. Palmer S. Diet, nutrition, and cancer. Prog Food Nutr Sci 1985;9:283-341.
  5. Gey KF, Brubacher GB, Stahelin HB. Plasma levels of antioxidant vitamins in relation to ischemic heart disease and cancer. Am J Clin Nutr 1987;45(5 Suppl):1368-1377. https://doi.org/10.1093/ajcn/45.5.1368
  6. Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C. Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 2007;297:842-857. https://doi.org/10.1001/jama.297.8.842
  7. Traber MG, Frei B, Beckman JS. Vitamin E revisited: do new data validate benefits for chronic disease prevention? Curr Opin Lipidol 2008;19:30-38.
  8. Niki E. Do free radicals play causal role in atherosclerosis? Low density lipoprotein oxidation and vitamin E revisited. J Clin Biochem Nutr 2011;48:3-7.
  9. Niki E. Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med 2009;47:469-484. https://doi.org/10.1016/j.freeradbiomed.2009.05.032
  10. Niki E. Biomarkers of lipid peroxidation in clinical material. Biochim Biophys Acta 2014;1840:809-817. https://doi.org/10.1016/j.bbagen.2013.03.020
  11. Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev 2011;111:5944-5972. https://doi.org/10.1021/cr200084z
  12. Cheeseman KH, Albano EF, Tomasi A, Slater TF. Biochemical studies on the metabolic activation of halogenated alkanes. Environ Health Perspect 1985;64:85-101. https://doi.org/10.1289/ehp.856485
  13. Recknagel RO. Carbon tetrachloride hepatotoxicity. Pharmacol Rev 1967;19:145-208.
  14. Smathers RL, Galligan JJ, Stewart BJ, Petersen DR. Overview of lipid peroxidation products and hepatic protein modification in alcoholic liver disease. Chem Biol Interact 2011;192:107-112. https://doi.org/10.1016/j.cbi.2011.02.021
  15. Sid B, Verrax J, Calderon PB. Role of oxidative stress in the pathogenesis of alcohol-induced liver disease. Free Radic Res 2013;47:894-904. https://doi.org/10.3109/10715762.2013.819428
  16. Adachi J, Asano M, Ueno Y, Naito T. Identification of 7-hydroperoxycholesterol in human liver by liquid chromatography-mass spectrometry. Alcohol Clin Exp Res 2000;24(4 Suppl):21S-25S.
  17. Aleynik SI, Leo MA, Aleynik MK, Lieber CS. Increased circulating products of lipid peroxidation in patients with alcoholic liver disease. Alcohol Clin Exp Res 1998;22:192-196. https://doi.org/10.1111/j.1530-0277.1998.tb03637.x
  18. Wierzbicki AS, Oben J. Nonalcoholic fatty liver disease and lipids. Curr Opin Lipidol 2012;23:345-352. https://doi.org/10.1097/MOL.0b013e3283541cfc
  19. Sumida Y, Niki E, Naito Y, Yoshikawa T. Involvement of free radicals and oxidative stress in NAFLD/NASH. Free Radic Res 2013;47:869-880. https://doi.org/10.3109/10715762.2013.837577
  20. Feldstein AE, Lopez R, Tamimi TA, et al. Mass spectrometric profiling of oxidized lipid products in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J Lipid Res 2010;51:3046-3054. https://doi.org/10.1194/jlr.M007096
  21. Terao K, Niki E. Damage to biological tissues induced by radical initiator 2,2'-azobis(2-amidinopropane) dihydrochloride and its inhibition by chain-breaking antioxidants. J Free Radic Biol Med 1986;2:193-201. https://doi.org/10.1016/S0748-5514(86)80070-8
  22. Morita M, Ishida N, Uchiyama K, et al. Fatty liver induced by free radicals and lipid peroxidation. Free Radic Res 2012;46:758-765. https://doi.org/10.3109/10715762.2012.677840
  23. Yoshida Y, Hayakawa M, Cynshi O, Jishage K, Niki E. Acceleration of lipid peroxidation in alpha-tocopherol transfer protein-knockout mice following the consumption of drinking water containing a radical initiator. J Oleo Sci 2008;57:577-583. https://doi.org/10.5650/jos.57.577
  24. Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010;362:1675-1685. https://doi.org/10.1056/NEJMoa0907929
  25. Cheng J, Joyce A, Yates K, Aouizerat B, Sanyal AJ. Metabolomic profiling to identify predictors of response to vitamin E for non-alcoholic steatohepatitis (NASH). PLoS One 2012;7:e44106. https://doi.org/10.1371/journal.pone.0044106
  26. Sumida Y, Naito Y, Tanaka S, et al. Long-term (>=2 yr) efficacy of vitamin E for non-alcoholic steatohepatitis. Hepatogastroenterology 2013;60:1445-1450.
  27. Steinberg D. The LDL modification hypothesis of atherogenesis: an update. J Lipid Res 2009;50 Suppl:S376-S381. https://doi.org/10.1194/jlr.R800087-JLR200
  28. Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ Res 2004;95:764-772. https://doi.org/10.1161/01.RES.0000146094.59640.13
  29. Noguchi N, Numano R, Kaneda H, Niki E. Oxidation of lipids in low density lipoprotein particles. Free Radic Res 1998;29:43-52. https://doi.org/10.1080/10715769800300061
  30. Colas R, Pruneta-Deloche V, Guichardant M, et al. Increased lipid peroxidation in LDL from type-2 diabetic patients. Lipids 2010;45:723-731. https://doi.org/10.1007/s11745-010-3453-9
  31. Garcia-Cruset S, Carpenter KL, Guardiola F, Stein BK, Mitchinson MJ. Oxysterol profiles of normal human arteries, fatty streaks and advanced lesions. Free Radic Res 2001;35:31-41. https://doi.org/10.1080/10715760100300571
  32. Niu X, Zammit V, Upston JM, Dean RT, Stocker R. Coexistence of oxidized lipids and alpha-tocopherol in all lipoprotein density fractions isolated from advanced human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 1999;19:1708-1718. https://doi.org/10.1161/01.ATV.19.7.1708
  33. Suarna C, Dean RT, May J, Stocker R. Human atherosclerotic plaque contains both oxidized lipids and relatively large amounts of alpha-tocopherol and ascorbate. Arterioscler Thromb Vasc Biol 1995;15:1616-1624. https://doi.org/10.1161/01.ATV.15.10.1616
  34. Kuhn H, Romisch I, Belkner J. The role of lipoxygenase-isoforms in atherogenesis. Mol Nutr Food Res 2005;49:1014-1029. https://doi.org/10.1002/mnfr.200500131
  35. Malle E, Marsche G, Arnhold J, Davies MJ. Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid. Biochim Biophys Acta 2006;1761:392-415. https://doi.org/10.1016/j.bbalip.2006.03.024
  36. Wagner JR, Motchnik PA, Stocker R, Sies H, Ames BN. The oxidation of blood plasma and low density lipoprotein components by chemically generated singlet oxygen. J Biol Chem 1993;268:18502-18506.
  37. Sato K, Niki E, Shimasaki H. Free radical-mediated chain oxidation of low density lipoprotein and its synergistic inhibition by vitamin E and vitamin C. Arch Biochem Biophys 1990;279:402-405. https://doi.org/10.1016/0003-9861(90)90508-V
  38. Bowry VW, Ingold KU, Stocker R. Vitamin E in human low-density lipoprotein: when and how this antioxidant becomes a pro-oxidant. Biochem J 1992;288(Pt 2):341-344. https://doi.org/10.1042/bj2880341
  39. Niki E, Noguchi N. Dynamics of antioxidant action of vitamin E. Acc Chem Res 2004;37:45-51. https://doi.org/10.1021/ar030069m
  40. Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. Free Radic Biol Med 2007;43:4-15. https://doi.org/10.1016/j.freeradbiomed.2007.03.024
  41. Corongiu FP, Poli G, Dianzani MU, Cheeseman KH, Slater TF. Lipid peroxidation and molecular damage to polyunsaturated fatty acids in rat liver: recognition of two classes of hydroperoxides formed under conditions in vivo. Chem Biol Interact 1986;59:147-155. https://doi.org/10.1016/S0009-2797(86)80062-X
  42. Niki E. Tocopherylquinone and tocopherylhydroquinone. Redox Rep 2007;12:204-210. https://doi.org/10.1179/135100007X200353
  43. Jishage K, Arita M, Igarashi K, et al. Alpha-tocopherol transfer protein is important for the normal development of placental labyrinthine trophoblasts in mice. J Biol Chem 2001;276:1669-1672. https://doi.org/10.1074/jbc.C000676200
  44. Niki E. Role of vitamin E as a lipid-soluble peroxyl radical scavenger: in vitro and in vivo evidence. Free Radic Biol Med 2014;66:3-12. https://doi.org/10.1016/j.freeradbiomed.2013.03.022
  45. Murer SB, Aeberli I, Braegger CP, et al. Antioxidant supplements reduced oxidative stress and stabilized liver function tests but did not reduce inflammation in a randomized controlled trial in obese children and adolescents. J Nutr 2014;144:193-201. https://doi.org/10.3945/jn.113.185561
  46. Li L, Chen CY, Aldini G, et al. Supplementation with lutein or lutein plus green tea extracts does not change oxidative stress in adequately nourished older adults. J Nutr Biochem 2010;21:544-549. https://doi.org/10.1016/j.jnutbio.2009.03.002
  47. Rimm EB, Stampfer MJ, Ascherio A, Giovannucci E, Colditz GA, Willett WC. Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med 1993;328:1450-1456. https://doi.org/10.1056/NEJM199305203282004
  48. Stampfer MJ, Hennekens CH, Manson JE, Colditz GA, Rosner B, Willett WC. Vitamin E consumption and the risk of coronary disease in women. N Engl J Med 1993;328:1444-1449. https://doi.org/10.1056/NEJM199305203282003
  49. Miller ER 3rd, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E. Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 2005;142:37-46. https://doi.org/10.7326/0003-4819-142-1-200501040-00110
  50. Dotan Y, Pinchuk I, Lichtenberg D, Leshno M. Decision analysis supports the paradigm that indiscriminate supplementation of vitamin E does more harm than good. Arterioscler Thromb Vasc Biol 2009;29:1304-1309. https://doi.org/10.1161/ATVBAHA.108.178699
  51. Myung SK, Ju W, Cho B, et al. Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials. BMJ 2013;346:f10. https://doi.org/10.1136/bmj.f10
  52. Vardi M, Levy NS, Levy AP. Vitamin E in the prevention of cardiovascular disease: the importance of proper patient selection. J Lipid Res 2013;54:2307-2314. https://doi.org/10.1194/jlr.R026641
  53. Asleh R, Blum S, Kalet-Litman S, et al. Correction of HDL dysfunction in individuals with diabetes and the haptoglobin 2-2 genotype. Diabetes 2008;57:2794-2800. https://doi.org/10.2337/db08-0450
  54. Forman HJ, Maiorino M, Ursini F. Signaling functions of reactive oxygen species. Biochemistry 2010;49:835-842. https://doi.org/10.1021/bi9020378
  55. Itoh K, Mimura J, Yamamoto M. Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Antioxid Redox Signal 2010;13:1665-1678. https://doi.org/10.1089/ars.2010.3222
  56. Finley JW, Kong AN, Hintze KJ, Jeffery EH, Ji LL, Lei XG. Antioxidants in foods: state of the science important to the food industry. J Agric Food Chem 2011;59:6837-6846. https://doi.org/10.1021/jf2013875
  57. Niki E. Do antioxidants impair signaling by reactive oxygen species and lipid oxidation products? FEBS Lett 2012;586:3767-3770. https://doi.org/10.1016/j.febslet.2012.09.025
  58. Davies MJ. Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention. J Clin Biochem Nutr 2011;48:8-19.
  59. Curtis AJ, Bullen M, Piccenna L, McNeil JJ. Vitamin E supplementation and mortality in healthy people: a meta- analysis of randomised controlled trials. Cardiovasc Drugs Ther 2014;28:563-573. https://doi.org/10.1007/s10557-014-6560-7
  60. Jiang S, Pan Z, Li H, Li F, Song Y, Qiu Y. Meta-analysis: low-dose intake of vitamin E combined with other vitamins or minerals may decrease all-cause mortality. J Nutr Sci Vitaminol (Tokyo) 2014;60:194-205. https://doi.org/10.3177/jnsv.60.194
  61. Abner EL, Schmitt FA, Mendiondo MS, Marcum JL, Kryscio RJ. Vitamin E and all-cause mortality: a meta-analysis. Curr Aging Sci 2011;4:158-170. https://doi.org/10.2174/1874609811104020158
  62. Traber MG. Mechanisms for the prevention of vitamin E excess. J Lipid Res 2013;54:2295-2306. https://doi.org/10.1194/jlr.R032946
  63. Upston JM, Terentis AC, Stocker R. Tocopherol-mediated peroxidation of lipoproteins: implications for vitamin E as a potential antiatherogenic supplement. FASEB J 1999;13:977-994. https://doi.org/10.1096/fasebj.13.9.977

Cited by

  1. Oxidative Stress in Children with Chronic Spontaneous Urticaria vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/3831071
  2. Protective effects of Vitamin E on CCl4-induced testicular toxicity in male rats vol.103, pp.2, 2015, https://doi.org/10.1556/036.103.2016.2.3
  3. Protective effects of Vitamin E on CCl4-induced testicular toxicity in male rats vol.103, pp.2, 2015, https://doi.org/10.1556/036.103.2016.2.3
  4. Oxidative stress in psoriasis and potential therapeutic use of antioxidants vol.50, pp.6, 2016, https://doi.org/10.3109/10715762.2016.1162301
  5. Free radical reactions of isoxazole and pyrazole derivatives of hispolon: kinetics correlated with molecular descriptors vol.50, pp.12, 2016, https://doi.org/10.1080/10715762.2016.1247955
  6. Topical tocopherol for treatment of reticular oral lichen planus: a randomized, double‐blind, crossover study vol.23, pp.1, 2017, https://doi.org/10.1111/odi.12573
  7. Effect of processing on composition changes of selected spices vol.12, pp.5, 2015, https://doi.org/10.1371/journal.pone.0176037
  8. Trimetazidine Protects Against Atherosclerosis by Changing Energy Charge and Oxidative Stress vol.24, pp.None, 2015, https://doi.org/10.12659/msm.911317
  9. Analysis of the Effects of δ-Tocopherol on RAW264.7 and K562 Cells Based on 1H NMR Metabonomics vol.66, pp.4, 2015, https://doi.org/10.1021/acs.jafc.7b04667
  10. Investigation of the curative effects of palm vitamin E tocotrienols on autoimmune arthritis disease in vivo vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-53424-7
  11. Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease vol.18, pp.6, 2015, https://doi.org/10.1111/acel.13031
  12. The Potential for Plant-Based Diets to Promote Health Among Blacks Living in the United States vol.11, pp.12, 2019, https://doi.org/10.3390/nu11122915
  13. Therapeutic Efficacy of Antioxidants in Ameliorating Obesity Phenotype and Associated Comorbidities vol.11, pp.None, 2015, https://doi.org/10.3389/fphar.2020.01234
  14. A Novel Vitamin E TPGS-Based Formulation Enhances Chlorhexidine Bioavailability in Corneal Layers vol.12, pp.7, 2015, https://doi.org/10.3390/pharmaceutics12070642
  15. Vitamins and Uterine Fibroids: Current Data on Pathophysiology and Possible Clinical Relevance vol.21, pp.15, 2020, https://doi.org/10.3390/ijms21155528
  16. Synthesis of [ 18 F]F-γ-T-3, a Redox-Silent γ-Tocotrienol (γ-T-3) Vitamin E Analogue for Image-Based In Vivo Studies of Vitamin E Biodistribution and Dynamics vol.25, pp.23, 2015, https://doi.org/10.3390/molecules25235700
  17. The Role of Haptoglobin Polymorphism in Cardiovascular Disease in the Setting of Diabetes vol.22, pp.1, 2015, https://doi.org/10.3390/ijms22010287
  18. α ‐Tocopherol suppresses hepatic steatosis by increasing CPT‐1 expression in a mouse model of diet‐induced nonalcoholic fatty liver disease vol.7, pp.1, 2015, https://doi.org/10.1002/osp4.460
  19. Independent predictors of insulin resistance in Brazilian adolescents: Results of the study of cardiovascular risk in adolescents-Brazil vol.16, pp.2, 2015, https://doi.org/10.1371/journal.pone.0246445
  20. Oxidative Stress and Endoplasmic Reticulum Stress in Rare Respiratory Diseases vol.10, pp.6, 2015, https://doi.org/10.3390/jcm10061268
  21. Assessment of the Technological Properties of Idebenone and Tocopheryl Acetate Co-Loaded Lipid Nanoparticles vol.11, pp.8, 2015, https://doi.org/10.3390/app11083553
  22. Effect of Gamma Co60-irradiated chitosan and vitamin E towards Pb acetate cytotoxicity on rat kidney vol.1918, pp.5, 2015, https://doi.org/10.1088/1742-6596/1918/5/052008
  23. The effects of vitamin E on colistin-induced nephrotoxicity in treatment of drug-resistant gram-negative bacterial infections: A randomized clinical trial vol.27, pp.8, 2015, https://doi.org/10.1016/j.jiac.2021.03.013
  24. Joint Cardioprotective Effect of Vitamin C and Other Antioxidants against Reperfusion Injury in Patients with Acute Myocardial Infarction Undergoing Percutaneous Coronary Intervention vol.26, pp.18, 2015, https://doi.org/10.3390/molecules26185702
  25. Effects of hazelnut supplemented diet on doxorubicin‐induced damage of reproductive system in male rats vol.45, pp.11, 2015, https://doi.org/10.1111/jfbc.13973