DOI QR코드

DOI QR Code

반복적 재구성 알고리즘과 관전류 자동 노출 조정 기법의 CT 영상 화질과 선량에 미치는 영향: 관상동맥 CT 조영 영상 프로토콜 기반의 팬텀 실험

Effects of Iterative Reconstruction Algorithm, Automatic Exposure Control on Image Quality, and Radiation Dose: Phantom Experiments with Coronary CT Angiography Protocols

  • 하성민 (연세 - Cedars-Sinai 심장융합영상연구센터) ;
  • 정성희 (연세대학교 의과대학 의과학과) ;
  • 장혁재 (연세대학교 의과대학 의과학과) ;
  • 박은아 (서울대학교병원 영상의학과) ;
  • 심학준 (도시바메디칼시스템즈코리아)
  • Ha, Seongmin (Yonsei - Cedars-Sinai, Integrative Cardiovascular Imaging Research Center) ;
  • Jung, Sunghee (Graduate School of Medical Sciences, College of Medicine, Yonsei University) ;
  • Chang, Hyuk-Jae (Graduate School of Medical Sciences, College of Medicine, Yonsei University) ;
  • Park, Eun-Ah (Department of Radiology, Seoul National University Hospital) ;
  • Shim, Hackjoon (Toshiba Medical Systems Korea)
  • 투고 : 2015.02.03
  • 심사 : 2015.03.16
  • 발행 : 2015.03.31

초록

본 논문에서는 반복적 구성 기법과 관전류 노출자동조절 기법이 영상의 화질과 방사선량에 미치는 영향을 관상동맥 전산화단층촬영 혈관조영 영상(coronary computed tomography angiography, CCTA)을 대상으로 팬텀 실험에 기반하여 평가하고자 한다. 이를 위하여 미국 의학물리학회(American Association of Physics in Medicine) 표준의 성능 평가 팬텀을 320 다중검출열 CT로써 촬영하였다. 80 kVp, 100 kVp, 120 kVp의 관전압에 있어서, 관전류 노출자동조절 기법은 저선량 목표 표준편차(SD=44)와 고선량(목표 표준편차=33)의 두 가지 설정으로써 촬영하였다. 재구성 변수로서는 필터보정 역투영(FBP)와 반복적 재구성 방법을 설정하여, 전부 12개의 재구성 영상을 획득하였다(12=3 (80, 100, 120 kVp)${\times}2$ (저선량(목표SD=44), 고선량(목표SD=33))${\times}2$ (필터보정역투영, 반복적 재구성). 영상의 화질은 잡음의 세기(표준편차), 변조전달함수, 대조대잡음비(CNR)에 의하여 평가하였으며, 관전압과 관전류 노출자동조절 기법에서의 목표 선량과 대소 및 재구성 기법의 선택이 화질과 방사선량에 미치는 영향을 관찰하였다. 반복적 재구성 기법은 필터보정역투영 기법보다 영상 잡음을 대폭 감소시켰으며 이는 저선량의 경우 더욱 뚜렷하였다. 즉, 잡음의 세기는 관전류 노출자동조절의 설정이 고선량 (목표SD=33)과 저선량(목표SD=44)인 경우, 각각 평균 38%와 평균 46% 감소하였다. 반복적 재구성 기법에 의하여, 변조전달 함수에 의한 공간적 해상도의 평가에 있어서 미약한 감소를 보였으나, 이로써 잡음 저감과 대조대잡음비(CNR)에 있어서의 현저한 개선을 상쇄할 정도의 영향에는 미치지 못 하였다. 결과적으로, 관상동맥 전산화단층촬영 혈관조영 영상의 획득에서 있어서, 반복적 재구성 기법과 관전류 노출자동조정 기법을 동시에 사용하는 것은 영상의 화질을 개선하면서 공간적 해상도의 저하 등 그 부작용은 최소화함으로써, 합리적으로 획득 가능한 한 최소한의 선량 (ALARA)의 원칙에 충실한 실제 임상적 효과를 의미한다고 기대할 수 있다.

In this study, we investigated the effects of an iterative reconstruction algorithm and an automatic exposure control (AEC) technique on image quality and radiation dose through phantom experiments with coronary computed tomography (CT) angiography protocols. We scanned the AAPM CT performance phantom using 320 multi-detector-row CT. At the tube voltages of 80, 100, and 120 kVp, the scanning was repeated with two settings of the AEC technique, i.e., with the target standard deviations (SD) values of 33 (the higher tube current) and 44 (the lower tube current). The scanned projection data were reconstructed also in two ways, with the filtered back projection (FBP) and with the iterative reconstruction technique (AIDR-3D). The image quality was evaluated quantitatively with the noise standard deviation, modulation transfer function, and the contrast to noise ratio (CNR). More specifically, we analyzed the influences of selection of a tube voltage and a reconstruction algorithm on tube current modulation and consequently on radiation dose. Reduction of image noise by the iterative reconstruction algorithm compared with the FBP was revealed eminently, especially with the lower tube current protocols, i.e., it was decreased by 46% and 38%, when the AEC was established with the lower dose (the target SD=44) and the higher dose (the target SD=33), respectively. As a side effect of iterative reconstruction, the spatial resolution was decreased by a degree that could not mar the remarkable gains in terms of noise reduction. Consequently, if coronary CT angiogprahy is scanned and reconstructed using both the automatic exposure control and iterative reconstruction techniques, it is anticipated that, in comparison with a conventional acquisition method, image noise can be reduced significantly with slight decrease in spatial resolution, implying clinical advantages of radiation dose reduction, still being faithful to the ALARA principle.

키워드

참고문헌

  1. MEDPAC: A Data Book: Healthcare Spending and the Medicare Program. Medicare Payment Advisory Commission, (2013)
  2. Smith-Bindman R, Lipson J, Marcus R, et al: Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer, Arch Intern Med 169(22):2079-2086 (2009)
  3. ICRP Publication 102: Managing patient dose in multi-detector computed tomography(MDCT).Ann ICRP 37(1):1-79 (2006) https://doi.org/10.1016/j.icrp.2007.09.001
  4. Hsieh J: Computed tomography: principles, design, artifacts, and recent advances, SPIE, (2009)
  5. Dougeni E, Faulkner K, Panayiotakis G: A review of patient dose and optimisation methods in adult and paediatric CT scanning, Eur J Radiol 81(4):665-683 (2011)
  6. Payne JT: CT radiation dose and image quality, Radiol Clin North Am 43(6):953-962 (2005) https://doi.org/10.1016/j.rcl.2005.07.002
  7. Hara AK, Paden RG, Silva AC, et al: Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study, AJR Am J Roentgenology 193(3):764-771 (2009) https://doi.org/10.2214/AJR.09.2397
  8. Xu J, Mahesh M, Tsui BM: Is iterative reconstruction ready for MDCT?, J Am Coll Radiol. 6(4):274-276 (2009) https://doi.org/10.1016/j.jacr.2008.12.014
  9. Denis T, Kalra MK, Gevenois PA: Radiation dose from multidetector CT. 2nd ed, Springer (2012), pp 152-154
  10. Von Spiczak J1, Morsbach F, Winklhofer S, et al: Coronary artery stent imaging with CT using an integrated electronics detector and iterative reconstructions: first in vitro experience, J Cardiovasc Comput Tomogr 7(4):215-222 (2013) https://doi.org/10.1016/j.jcct.2013.08.003
  11. Ohashi K, Ichikawa K, Hara M: Examination of the optimal temporal resolution required for computed tomography coronary angiography, Radiol Phys Technol 6(2):453-460 (2013) https://doi.org/10.1007/s12194-013-0218-1
  12. Gervaise A, Osemont B, Lecocq S: CT image quality improvement using adaptive iterative dose reduction with widevolume acquisition on 320-detector CT, European radiology 22(2):295-301 (2012) https://doi.org/10.1007/s00330-011-2271-7
  13. Nakaya Y, Kawata Y, Niki N, et al: A method for determining the modulation transfer function from thick microwire profiles measured with x-ray microcomputed tomography, Medical Physics 39(7):4347-4364 (2012) https://doi.org/10.1118/1.4729711
  14. Ohkubo M, Wada S, Matsumoto T, et al: An effective method to verify line and point spread functions measured in computed tomography, Medical physics 33(8):2757-2764 (2006) https://doi.org/10.1118/1.2214168
  15. L. del Risco Norrlid, C. Ronnqvist, K. Fransson, et al: Calculation of the modulation transfer function for the X-ray imaging detector DIXI using Monte Carlo simulation data, Nuclear Instruments and Methods in Physics Research Section A 466(1):209-217, (2001) https://doi.org/10.1016/S0168-9002(01)00847-6
  16. Samei E, Ranger NT, Dobbins JT 3rd, et al: Intercomparison of methods for image quality characterization. I. Modulation transfer function, Medical physics 33(5):1454-1465 (2006) https://doi.org/10.1118/1.2188816
  17. Kenneth AF, Nicholas JH, Beth AS, et al: Measurement of the presampled two-dimensional modulation transfer function of digital imaging systems, Medical physics 29(5) 913-921 (2002) https://doi.org/10.1118/1.1472498
  18. Kalra MK, Maher MM, Toth TL, et al: Strategies for CT radiation dose optimization. Radiology 230(3):619-628 (2004) https://doi.org/10.1148/radiol.2303021726
  19. ICRP publication 103: The 2007 Recommendations of the International Commission on Radiological Protection, Ann ICRP 37(2-4):(2007)
  20. Halliburton SS, Abbara S, Chen MY, et al: SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT, Journal of Cardiovascular Computed Tomography 5(4):198-224 (2011) https://doi.org/10.1016/j.jcct.2011.06.001
  21. Sharma RK, Voelker DJ, Sharma RK: Coronary computed tomographic angiography (CCTA) in community hospitals: "current and emerging role", Vasc Health Risk Manag 25(6): 307-316 (2010)

피인용 문헌

  1. Effects of Physical Factors on Computed Tomography Image Quality vol.22, pp.2, 2015, https://doi.org/10.4283/jmag.2017.22.2.227
  2. 전산화단층촬영에서 관전압과 관전류, 통계적 반복재구성법에 따른 화질과 피폭선량 vol.40, pp.3, 2015, https://doi.org/10.17946/jrst.2017.40.3.05
  3. A Fundamental Study on the Fabrication of Human Model Bone Phantom using an Entry-Level 3D Printer: using FDM Method for the Femur Model vol.14, pp.5, 2020, https://doi.org/10.7742/jksr.2020.14.5.651