• Title/Summary/Keyword: 저선량 CT

Search Result 84, Processing Time 0.025 seconds

Usefulness Evaluation of Low-dose CT for Emphysema : Compared with High-resolution CT (폐기종에 대한 저선량 CT의 유용성 평가: 고해상도 CT와 비교)

  • Lee, Won-Jeong
    • Journal of radiological science and technology
    • /
    • v.39 no.3
    • /
    • pp.329-336
    • /
    • 2016
  • The purpose of this study was to evaluate the usefulness of low-dose CT (LDCT) for emphysema compared with high-resolution CT (HRCT). Measurements of radiation dose and noise were repeated 3 times in same exposure condition which was similar with obtaining HRCT and LDCT images. We analysed reading results of 146 subjects. Six images per participants selected for emphysema grading. Emphysema was graded for all 6 zones on the left and right sides of the lungs by the consensus reading of two chest radiologists using a 4-point scale. Between the HRCT and LDCT images, diagnostic differences and agreements for emphysema were analyzed by McNemar's and unweighted kappa tests, and radiation doses and noise by a Mann-Whitney U-test, using the SPSS 19.0 program. Radiation dose from HRCT was significantly higher than that of LDCT, but the noise was significantly lower in HRCT than in LDCT. Diagnostic agreement for emphysema between HRCT and LDCT images was excellent (k-value=0.88). Emphysema grading scores were not significantly different between HRCT and LDCT images for all six lung zones. Emphysema grading scores from LDCT images were significantly correlated with increased scores on HRCT images (r=0.599, p < 0.001). Considering the tradeoff between radiation dose and image noise, LDCT could be used as the gold standard method instead of HRCT for emphysema detection and grading.

Measurement of Radiation Dose of HR CT and Low Dose CT by using Anthropomorphic Chest Phantom and Glass Dosimetry (인체등가형 흉부팬텀과 유리선량계를 이용한 고해상력 및 저선량 CT의 선량측정)

  • Kweon, Dae Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.933-939
    • /
    • 2019
  • The purpose of this study is to provide basic clinical data by evaluating images, measuring absorbed dose and effective dose by using high resolution CT and low dose CT by using anthropomorphic chest phantom and glass dosimeter. Tissue dose was measured by inserting a glass dosimeter into the anthropomorphic chest phantom. A 64-slice CT system (SOMATOM Sensation 64, Siemens AG, Forchheim, Germany) and CARE Dose 4D were used, and the parameters of the high resolution CT were 120 kVp, Eff. Scan parameters of mAs 104, scan time 7.93 s, slice 1.0 mm (Acq. 64 × 0.6 mm), convolution kernel (B60f sharp) were used, and low dose CT was 120 kVp, Eff. mAs 15, scan time 7.41 s, slice 3.0 mm (Acq. 64 × 0.6 mm), scan of convolution kernel B50f medium sharp. CTDIvol was measured at 8.01 mGy for high resolution CT and 1.18 mGy for low dose CT. Low dose CT scans showed 85.49% less absorbed dose than high resolution CT scans.

Radiation Dose and Image Quality of Low-dose Protocol in Chest CT: Comparison of Standard-dose Protocol (흉부 CT촬영에서 저선량 프로토콜의 선량과 화질: 표준선량 프로토콜과 비교)

  • Lee, Won-Jeong;Ahn, Bong-Seon;Park, Young-Sun
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.2
    • /
    • pp.84-89
    • /
    • 2012
  • The purpose of this study was to compare radiation dose and image quality between low-dose (LDP) and standard-dose protocol (SDP). LDP (120 kVp, 30 mAs, 2-mm thickness) and SDP (120 kVp, 180 mAs, 1.2-mm thickness) images obtained from 61 subjects were retrospectively evaluated at level of carina bifurcation, using multi-detector CT (Brilliance 16, Philips Medical Systems). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated at ascending aorta and infraspinatus muscle, from CT number and back-ground noise. Radiation dose from two protocols measured at 5-point using acrylic-phantom, and CT number and noise measured at 4-point using water-phantom. All statistical analysis were performed using SPSS 19.0 program. LDP images showed significantly more noise and a significantly lower SNR and CNR than did SDP images at ascending aorta and infraspinatus muscle. Noise, SNR and CNR were significantly correlated with body mass index (p<0.001). Radiation dose, SNR and CNR from phantom were significant differences between two protocols. LDP showed a significant reduction of radiation dose with a significant change in SNR and CNR compared with SDP. Therefore, exposure dose on LDP in clinical applications needs resetting highly more considering image quality.

Correlation Analysis of between Patient and Equipment Factors and Radiation Dose in Chest Low Dose and Abdominal Non-contrast CT (흉부 저선량 및 복부 비조영 CT 검사에서 환자 및 장비 인자와 선량과의 상관관계 분석)

  • Shim, Jina;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.117-123
    • /
    • 2021
  • This paper is to establish a basis for a dose reduction strategy by confirming correlations with the factors that may affect the radiation dose based on the dose records in low-dose chest CT and abdominal non-contrast CT. In order to find out the causes of unnecessary exposure, the correlation between seven factors (age, gender, height, weight, BMI, patient status [inpatient and outpatient], and use of dose modulation) and CT dose were identified. Logistic regression was used as the statistical analysis for correlation verification. In the low dose chest CT, as the higher values of height and BMI and dose modulation off were associated with lowering the risk exceeding Diagnostic Reference Levels(DRL) (odds ration<1, p<0.05). However, as woman compared to man and the higher values of weight were associated with highering the risk exceeding DRL (odds ration>1, p<0.05). In the abdomen CT, as dose modulation off were associated with lowering the risk exceeding DRL (odds ration<1, p<0.05). Therefore It is necessary to conduct research on the relationship between various factors affecting radiation exposure and patient radiation dose for reducing the dose.

Application of Low-Dose CT for Screening of Lung Disease (폐질환의 선별검사를 위한 저선량 전산화 단층촬영의 적용)

  • Lee, Won-Jeong;Choi, Byung-Soon;Park, Young-Sun;Seon, Jong-Ryul;Bae, Seok-Hwan
    • Journal of radiological science and technology
    • /
    • v.32 no.2
    • /
    • pp.129-140
    • /
    • 2009
  • As CT has been increasingly used as an accurate screening tool for lung disease, radiation dose becomes an important issue for both radiographers and patients. Many researches have been done for a low-dose CT as a screening tool for early detection of asymptomatic lung diseases. From those studies, it has been reported that chest dose rate from the low-dose CT is considerably lower than from standard CT. The patient dose is determined by scanning parameters such as kVp, mAs, pitch, scan time and the radiation risk of lung in screening examination may not be negligible. Herein, we suggest that Low-dose CT is useful as a screening tool in routine clinical practice on the basis of published articles, but further study is necessary because Low-dose CT has poor sensitivity and specificity for screening early stage of lung cancer according to the results of the studies. This article is to provide a brief overview of the screening examinations by Low-dose CT.

  • PDF

Prediction of Obstructive Coronary Artery Disease by Coronary Artery Calcification Finding on Low-dose CT Image for screening of lung diseases: Compared with Calcium Scoring CT (폐질환 선별검사를 위한 저선량 CT영상의 관상동맥 석회화 소견으로부터 폐쇄성 관상동맥질환 예측: 석회화수치 CT검사와 비교)

  • Lee, Won-Jeong
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.10
    • /
    • pp.333-341
    • /
    • 2011
  • To compare between calcium scoring CT (CSCT) and Low-dose CT (LDCT) image finding for coronary artery calcification (CAC) in screening of lung disease by MDCT. A total of 61 subjects who retired-workers exposed to inorganic dust were performed LDCT and CSCT by using a MDCT scanner on the same day, after be approved by the institutional review board, and obtaining the written informed consent from all subjects. LDCT images were read for detecting lung diseases as well as CAC by a experienced chest radiologist, then the subjects were divided either the positive group with CAC or the negative group without it. The CSCT was used to quantify and detect the presence of calcification in the coronary artery, and score of CAC calculated by using a Rapidia software (ver 2.8). In all coronary arteries, calcium score of positive group was higher better than that in negative group, especially in the total calcium (13.7 vs. 582.9, p=0.008) and the left anterior descending artery (3.2 vs. 249.0, p=0.006). CAC findings between CSCT and LDCT image were showed excellent agreement in cut-off point 100(K-value=0.80, 95% CI=0.69-0.91) from total calcium score. CAC findings on LDCT images showed the higher relation with CSCT. Therefore, the obstructive coronary artery disease could be predicted by CAC on LDCT images for screening of lung diseases.

Low-dose Chest CT in Evaluation of Coronary Artery Calcification: Correlation with Coronary Artery Calcium Score CT (관상동맥 석회화 평가에서 저선량 흉부 CT와 관상동맥 석회화검사의 일치도)

  • Yon-Min Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.7
    • /
    • pp.1033-1039
    • /
    • 2023
  • Low-dose chest CT, which is used as a lung screening test, also includes information on coronary artery calcification within the scan range. The purpose of this study was to investigate the usefulness of determining coronary artery calcification using Low-dose chest CT. Those who underwent low-dose chest CT and coronary artery calcification score CT on the same day were eligible. Coronary artery calcium score CT results were divided into 4 groups (Low: 1〈CACS〈10, Mild: 10〈CACS〈100, Moderate: 100〈CACS〈400, High: 400〈CACS) by referring to the Coronary artery calcium score categories and risks. After selecting 30 people each group, five radiotechnologists with more than 15 years of experience in coronary artery calcium measurement retrospectively analyzed the presence or absence of coronary artery calcification in low-dose chest CT images. The results of the five observers' uniform interpretation of the low-dose chest CT image were consistent with the coronary artery calcium score CT results in Low group: 56%, Mild group: 96.6%, Moderate group: 100%, and High group: 100%. appeared. In the Low group, all 5 observers observed calcification in 17 out of 30 cases, and in 7 cases all 5 observers decided that calcification could not be identified. Coronary artery calcification could be observed in 100% of asymptomatic adults with a calcium score of 15 or higher in low-dose chest CT scans. The minimum calcium score that can be identified is 1, and it was found that even very small calcifications can be identified when the subject's body size is small or the scan is performed at a time when heart movement is minimal.

Usability Evaluation of Applied Low-dose CT When Examining Urinary Calculus Using Computed Tomography (컴퓨터 단층촬영을 이용한 요로결석 검사에서 저선량 CT의 적용에 대한 유용성 평가)

  • Kim, Hyeon-Jin;Ji, Tae-Jeong
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.6
    • /
    • pp.81-85
    • /
    • 2017
  • The aim of this study was to evaluate the usability of applied Low dose Computed Tomography(LDCT) protocol in examining urinary calculus using computed tomography. The subjects of this study were urological patients who visited a medical institution located in Busan from June to December 2016 and the protocol used in this study was Adaptive Statistical Iterative Reconstruction: low-dose CT with 50% Adaptive Statistical Iterative Reconstruction (ASIR). As results of quantitative analysis, the mean pixel value and standard deviation within kidney region of image(ROI)of the axial image were $26.21{\pm}7.08$ in abdomen CT pre scan and $20.03{\pm}8.16$ in low-dose CT. Also the mean pixel value and standard deviation within kidney ROI of the coronal image were $22.07{\pm}7.35$ in abdomen CT pre scan and $21.67{\pm}6.11$ in low dose CT. The results of qualitative analysis showed that four raters' mean values of observed kidney artifacts were $19.14{\pm}0.36$ when using abdomen CT protocol and $19.17{\pm}0.43$ in low-dose CT, and the mean value of resolution and contrast was $19.35{\pm}0.70$ when using abdomen CT protocol and $19.29{\pm}0.58$ in low-dose CT. Also the results of a exposure dose analysis showed that the mean values of CTDIvol and DLP in abdomen CT pre scan were 18.02 mGy and $887.51mGy{\cdot}cm$ respectively and the mean values of CTDIvol and DLP when using low-dose CT protocol were 7.412 mGy and $361.22mGy{\cdot}cm$ respectively. The resulting dose reduction rate was 58.82% and 59.29%, respectively.

Effect of the Dose Reduction Applied Low Dose for PET/CT According to CT Attenuation Correction Method (PET/CT 저선량 적용 시 CT 감쇠보정법에 따른 피폭선량 저감효과)

  • Jung, Seung Woo;Kim, Hong Kyun;Kwon, Jae Beom;Park, Sung Wook;Kim, Myeong Jun;Sin, Yeong Man;Kim, Yeong Heon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.127-133
    • /
    • 2014
  • Purpose: Low dose of PET/CT is important because of Patient's X-ray exposure. The aim of this study was to evaluate the effectiveness of low-dose PET/ CT image through the CTAC and QAC of patient study and phantom study. Materials and Methods: We used the discovery 710 PET/CT (GE). We used the NEMA IEC body phantom for evaluating the PET data corrected by ultra-low dose CT attenuation correction method and NU2-94 phantom for uniformity. After injection of 70.78 MBq and 22.2 MBq of 18 F-FDG were done to each of phantom, PET/CT scans were obtained. PET data were reconstructed by using of CTAC of which dose was for the diagnosis CT and Q. AC of which was only for attenuation correction. Quantitative analysis was performed by use of horizontal profile and vertical profile. Reference data which were corrected by CTAC were compared to PET data which was corrected by the ultra-low dose. The relative error was assessed. Patients with over weighted and normal weight also underwent a PET/CT scans according to low dose protocol and standard dose protocol. Relative error and signal to noise ratio of SUV were analyzed. Results: In the results of phantom test, phantom PET data were corrected by CTAC and Q.AC and they were compared each other. The relative error of Q.AC profile was been calculated, and it was shown in graph. In patient studies, PET data for overweight patient and normal weight patient were reconstructed by CTAC and Q.AC under routine dose and ultra-low dose. When routine dose was used, the relative error was small. When high dose was used, the result of overweight patient was effectively corrected by Q.AC. Conclusion: In phantom study, CTAC method with 80 kVp and 10 mA was resulted in bead hardening artifact. PET data corrected by ultra- low dose CTAC was not quantified, but those by the same dose were quantified properly. In patients' cases, PET data of over weighted patient could be quantified by Q.AC method. Its relative difference was not significant. Q.AC method was proper attenuation correction method when ultra-low dose was used. As a result, it is expected that Q.AC is a good method in order to reduce patient's exposure dose.

  • PDF

Findings on Chest Low-Dose CT Images of Group Exposed to Inorganic Dusts (분진에 노출되었던 집단의 흉부 저선량 CT영상 소견)

  • Lee, Won-Jeong;Seon, Jong-Ryul;Ahn, Bong-Seon;Park, Young-Sun
    • Journal of radiological science and technology
    • /
    • v.34 no.4
    • /
    • pp.305-314
    • /
    • 2011
  • The purpose of this study was to compare the findings on the chest low-dose CT (LDCT) images between the negative and positive groups for pneumoconiosis in the group exposed to inorganic dust. From May 30, 2007 to August 31, 2008, total 328 subjects were examined by a LDCT. LDCT images were read by a chest radiologist who has much experience for reading of pneumoconiosis. All subjects were classified into two groups based on digital images after consensus reading of two radiologists according to the ILO 2000 guidelines; negative group (87, 26.5%) without pneumoconiosis and positive group (241, 73.5%). Statistical analysis was performed using a SPSS 14.0. There were significant differences in age (60.9 vs. 65.0, p<0.001), and in dust expose duration (17.0 vs. 19.2, p=0.024) between two groups, but no significant difference in smoking (p=0.784). Of the 328 subjects, 13 diagnosis were extracted from 245 subjects (74.7%). Coronary artery calcification (CAC) was significantly higher in positive group than that in negative group (36.9% vs. 25.3%, p=0.049). Honeycombing showed higher frequency in positive group than in negative group (6.2% vs. 1.2%, p=0.079). Pneumoconiosis findings caused by inorganic dusts exposure showed the significant relation with CAC on LDCT images. Future studies need to prove that pneumoconiosis finding is independent risk factor for CAC using a coronary artery angiography.