DOI QR코드

DOI QR Code

Reduction of Color Shift Using Dichroic Dyes in a Cholesteric Liquid Crystal Cell

콜레스테릭 액정 셀에서 염료를 이용한 Color Shift 제거

  • Park, Jun-Hee (Department of Electronics Engineering, Pusan National University) ;
  • Oh, Seung-Won (Department of Electronics Engineering, Pusan National University) ;
  • Yoon, Tae-Hoon (Department of Electronics Engineering, Pusan National University)
  • Received : 2015.02.02
  • Accepted : 2015.03.04
  • Published : 2015.04.25

Abstract

We propose a reflective cholesteric liquid crystal cell with reduced color shift, using dichroic dyes. Color-shifted light is absorbed by dye molecules in the proposed dye-doped cholesteric liquid crystal (DDCLC) cell. We have shown that the color shift can be reduced by increasing the concentration of dye molecules in the proposed DDCLC cell.

본 논문에서는 스위칭 가능한 브래그 반사판의 한 종류인 콜레스테릭 액정 셀에 염료를 주입함으로써 입사각에 따라 단파장대로 이동된 반사광을 제거하는 셀을 구현하였다. 액정과 카이랄 도펀트를 일정 비율로 혼합하여 원하는 파장대역을 반사하는 콜레스테릭 액정 셀을 제작하였고, 이에 특정한 파장대역을 흡수하는 성질을 가지는 이색성 염료를 혼합함으로써, 빛의 입사각이 증가할 때 단파장으로 이동된 빛을 흡수하여 초기에 설계된 색을 유지할 수 있다. 염료를 혼합하지 않은 콜레스테릭 액정 셀에서는 입사각에 따라서 반사 된 빛이 눈에 띄게 단파장대로 이동되는데 반해, 제안된 방법에서는 염료의 혼합 비율이 1, 2 wt%로 증가할수록 단파장대로 이동된 빛을 더 잘 흡수하는 것을 확인하였다.

Keywords

References

  1. D. W. Berreman and W. R. Heffner, "New bistable cholesteric liquid-crystal display," Appl. Phys. Lett. 37, 109-111 (1980). https://doi.org/10.1063/1.91680
  2. D.-K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, "Cholesteric reflective display: Drive scheme and contrast," Appl. Phys. Lett. 64, 1905-1907 (1994). https://doi.org/10.1063/1.111738
  3. S. T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (Wiley, 2001).
  4. D.-K. Yang and S.-T. Wu, Fundamentals of Liquid Crystal Devices (Wiley, 2006).
  5. K.-H. Kim, B.-H. Yu, S.-W. Choi, S.-W. Oh, and T.-H. Yoon, "Dual mode switching of cholesteric liquid crystal device with three-terminal electrode structure," Opt. Express 20, 24376-24381 (2012). https://doi.org/10.1364/OE.20.024376
  6. S.-W. Oh and T.-H. Yoon, "Fast bistable switching of a cholesteric liquid crystal device induced by application of an in-plane electric field," Appl. Opt. 53, 7321-7324 (2014). https://doi.org/10.1364/AO.53.007321
  7. S. Shandrasekhar, Liquid Crystals (Cambridge University Press, 1992).
  8. P. Yeh and C. Gu, Optics of Liquid Crystal Displays, 2nd ed. (Wiley, 2010).
  9. K.-H. Kim, H.-J. Jin, K.-H. Park, J.-H. Lee, J. C. Kim, and T.-H. Yoon, "Long-pitch cholesteric liquid crystal cell for switchable achromatic reflection," Opt. Express 18, 16745-16750 (2010). https://doi.org/10.1364/OE.18.016745
  10. W.-G. Jang, T. W. Beom, H. Cui, J. R. Park, S. J. Hwang, Y. J. Lim, and S. H. Lee, "Reduction of viewing-angle dependent color shift in a reflective type cholesteric liquid crystal color filter," Appl. Phys. Express 1, 032001 (2008). https://doi.org/10.1143/APEX.1.032001
  11. Y.-T. Lin and T.-H. Lin, "Cholesteric liquid crystal display with wide viewing angle based on multi-domain phase-separated composite films," J. Disp. Technol. 7, 373-376 (2011). https://doi.org/10.1109/JDT.2011.2120594
  12. C. P. Chen, K.-H. Kim, T.-H. Yoon, and J. C. Kim, "A viewing angle switching panel using guest-host liquid crystal," Jpn. J. Appl. Phys. 48, 062401 (2009). https://doi.org/10.1143/JJAP.48.062401
  13. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae (Wiley, 1982).
  14. D. Fairchild, Color Appearance Models (Addison-Wesley, 1998).