References
- Anders, S. and Huber, W. (2010). Differential expression analysis for sequence count data, Genome Biology, 11, R106. https://doi.org/10.1186/gb-2010-11-10-r106
- Anders, S., McCarthy, D. J., Chen, Y., Okoniewski, M., Smyth, G. K., Huber, W. and Robinson, M. D. (2013). Count-based differential expression analysis of RNA sequencing data using R and Bioconductor, Nature Protocols, 8, 1765-1786. https://doi.org/10.1038/nprot.2013.099
- Anders, S., Reyes, A. and Huber, W. (2012). Detecting differential usage of exons from RNA-seq data, Genome Research, 22, 2008-2017. https://doi.org/10.1101/gr.133744.111
- Aryee, M. J., Gutierrez-Pabello, J. A., Kramnik, I., Maiti, T. and Quackenbush, J. (2009). An improved empirical bayes approach to estimating differential gene expression in microarray timecourse data: BETR (Bayesian Estimation of Temporal Regulation), BMC Bioinformatics, 10, 409. https://doi.org/10.1186/1471-2105-10-409
- Bar-Joseph, Z., Gitter, A. and Simon, I. (2012). Studying and modelling dynamic biological processes using time-series gene expression data, Nature Reviews Genetics, 13, 552-564. https://doi.org/10.1038/nrg3244
- Beretta, S., Bonizzoni, P., Vedova, G. D., Pirola, Y. and Rizzi, R. (2014). Modeling alternative splicing variants from RNA-Seq data with isoform graphs, Journal of Computational Biology : A Journal of Computational Molecular Cell Biology, 21, 16-40. https://doi.org/10.1089/cmb.2013.0112
- Bernard, E., Jacob, L., Mairal, J. and Vert, J. P. (2014). Efficient RNA isoform identification and quantification from RNA-Seq data with network flows, Bioinformatics, 30, 2447-2455. https://doi.org/10.1093/bioinformatics/btu317
- Bi, Y. and Davuluri, R. V. (2013). NPEBseq: Nonparametric empirical bayesian-based procedure for differential expression analysis of RNA-seq data, BMC Bioinformatics, 14, 262. https://doi.org/10.1186/1471-2105-14-262
- Bullard, J. H., Bullard, J. H., Purdom, E., Hansen, K. D. and Dudoit, S. (2010). Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments, BMC Bioinformatics, 11, 94. https://doi.org/10.1186/1471-2105-11-94
- Cumbie, J. S., Kimbrel, J. A., Di, Y., Schafer, D. W., Wilhelm, L. J., Fox, S. E., Sullivan, C. M., Curzon, A. D., Carrington, J. C., Mockler, T. C. and Chang, J. H. (2011). GENE-counter: A computational pipeline for the analysis of RNA-Seq data for gene expression differences, PloS One, 6, e25279. https://doi.org/10.1371/journal.pone.0025279
- Deng, N., Puetter, A., Zhang, K., Johnson, K., Zhao, Z., Taylor, C., Flemington, E. K. and Zhu, D. (2011). Isoform-level microRNA-155 target prediction using RNA-seq, Nucleic Acids Research, 39, e61. https://doi.org/10.1093/nar/gkr042
- Gao, X. and Song, P. X. (2005). Nonparametric tests for differential gene expression and interaction effects in multi-factorial microarray experiments, BMC Bioinformatics, 6, 186. https://doi.org/10.1186/1471-2105-6-186
- Gatto, A., Torroja-Fungairino, C., Mazzarotto, F., Cook, S. A., Barton, P. J., Sanchez-Cabo, F. and Lara-Pezzi, E. (2014). FineSplice, enhanced splice junction detection and quantification: A novel pipeline based on the assessment of diverse RNA-Seq alignment solutions, Nucleic Acids Research, 42, e71. https://doi.org/10.1093/nar/gku166
- Gerns Storey, H. L., Richardson, B. A., Singa, B., Naulikha, J., Prindle, V. C., Diaz-Ochoa, V. E., Felgner, P. L., Camerini, D., Horton, H., John-Stewart, G. and Walson, J. L. (2014). Use of principal components analysis and protein microarray to explore the association of HIV-1-specific IgG responses with disease progression, AIDS Research and Human Retroviruses, 30, 37-44. https://doi.org/10.1089/aid.2013.0088
- Ginsberg, S. D., Alldred, M. J., Counts, S. E., Cataldo, A. M., Neve, R. L., Jiang, Y., Wuu, J., Chao, M. V., Mufson, E. J., Nixon, R. A. and Che, S. (2010). Microarray analysis of hippocampal CA1 neurons implicates early endosomal dysfunction during Alzheimer's disease progression, Biological Psychiatry, 68, 885-893. https://doi.org/10.1016/j.biopsych.2010.05.030
- Glaus, P., Honkela, A. and Rattray, M. (2012). Identifying differentially expressed transcripts from RNA-seq data with biological variation, Bioinformatics, 28, 1721-1728. https://doi.org/10.1093/bioinformatics/bts260
- Goncalves, A., Tikhonov, A., Brazma, A. and Kapushesky, M. (2011). A pipeline for RNA-seq data processing and quality assessment, Bioinformatics, 27, 867-869. https://doi.org/10.1093/bioinformatics/btr012
- Gupta, V., Markmann, K., Pedersen, C. N. S., Stougaard, J. and Andersen, S. U. (2012). shortran: A pipeline for small RNA-seq data analysis, Bioinformatics, 28, 2698-2700. https://doi.org/10.1093/bioinformatics/bts496
- Han, H. and Jiang, X. (2014). Disease biomarker query from RNA-seq data, Cancer Informatics, 13, 81-94.
- Hardcastle, T. J. and Kelly, K. A. (2010). baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data, BMC Bioinformatics, 11, 422. https://doi.org/10.1186/1471-2105-11-422
- Hill, J. T., Demarest, B. L., Bisgrove, B. W., Gorsi, B., Su, Y. C. and Yost, H. J. (2013). MMAPPR:Mutation mapping analysis pipeline for pooled RNA-seq, Genome Research, 23, 687-697. https://doi.org/10.1101/gr.146936.112
- Hiller, D., Jiang, H., Xu, W. and Wong, W. H. (2009). Identifiability of isoform deconvolution from junction arrays and RNA-Seq, Bioinformatics, 25, 3056-3059. https://doi.org/10.1093/bioinformatics/btp544
- Hiller, D. and Wong, W. H. (2013). Simultaneous isoform discovery and quantification from RNAseq, Statistics in Biosciences, 5, 100-118. https://doi.org/10.1007/s12561-012-9069-2
- Howard, B. E. and Heber, S. (2010). Towards reliable isoform quantification using RNA-SEQ data, BMC Bioinformatics, 11, S6.
- Hu, Y., Liu, Y., Mao, X., Jia, C., Ferguson, J. F., Xue, C., Reilly, M. P., Li, H. and Li, M. (2014). PennSeq: Accurate isoform-specific gene expression quantification in RNA-Seq by modeling non-uniform read distribution, Nucleic Acids Research, 42, e20. https://doi.org/10.1093/nar/gkt1304
- Ji, H. and Liu, X. S. (2010). Analyzing 'omics data using hierarchical models, Nature Biotechnology, 28, 337-340. https://doi.org/10.1038/nbt.1619
- Jiang, H. and Wong, W. H. (2009). Statistical inferences for isoform expression in RNA-Seq, Bioinformatics, 25, 1026-1032. https://doi.org/10.1093/bioinformatics/btp113
- Katz, Y.,Wang, E. T., Airoldi, E. M. and Burge, C. B. (2010). Analysis and design of RNA sequencing experiments for identifying isoform regulation, Nature Methods, 7, 1009-1015. https://doi.org/10.1038/nmeth.1528
- Kaur, H., Mao, S., Li, Q., Sameni, M., Krawetz, S. A., Sloane, B. F. and Mattingly, R. R. (2012). RNA-Seq of human breast ductal carcinoma in situ models reveals aldehyde dehydrogenase isoform 5A1 as a novel potential target, PloS One, 7, e50249. https://doi.org/10.1371/journal.pone.0050249
- Kim, K. H., Moon, M., Yu, S. B., Mook-Jung, I. and Kim, J. I. (2012). RNA-Seq analysis of frontal cortex and cerebellum from 5XFAD mice at early stage of disease pathology, Journal of Alzheimer's Disease: JAD, 29, 793-808.
- Kimes, P. K., Cabanski, C. R., Wilkerson, M. D., Zhao, N., Johnson, A. R., Perou, C. M., Makowski, L., Maher, C. A., Liu, Y., Marron, J. S. and Hayes, D. N. (2014). SigFuge: Single gene clustering of RNA-seq reveals differential isoform usage among cancer samples, Nucleic Acids Research, 42, e113. https://doi.org/10.1093/nar/gku521
- Knowles, D. G., Roder, M., Merkel, A. and Guigo, R. (2013). Grape RNA-Seq analysis pipeline environment, Bioinformatics, 29, 614-621. https://doi.org/10.1093/bioinformatics/btt016
- Kroll, K. W., Kroll, K. W., Mokaram, N. E., Pelletier, A. R., Frankhouser, D. E., Westphal, M. S., Stump, P. A., Stump, C. L., Bundschuh, R., Blachly, J. S. and Yan, P. (2014). Quality control for RNA-seq (QuaCRS): An integrated quality control pipeline, Cancer Informatics, 13, 7-14.
- Kumar, R., Lawrence, M. L., Watt, J., Cooksey, A. M., Burgess, S. C. and Nanduri, B. (2012). RNAseq based transcriptional map of bovine respiratory disease pathogen "Histophilus somni 2336", PloS One, 7, e29435. https://doi.org/10.1371/journal.pone.0029435
- Lee, J., Ji, Y., Liang, S., Cai, G. and Muller, P. (2011). On differential gene expression using RNA-Seq data, Cancer Informatics, 10, 205-215.
- Leon-Novelo, L. G., McIntyre, L. M., Fear, J. M. and Graze, R. M. (2014). A flexible Bayesian method for detecting allelic imbalance in RNA-seq data, BMC Genomics, 15, 920. https://doi.org/10.1186/1471-2164-15-920
- Lerch, J. K., Kuo, F., Motti, D., Morris, R., Bixby, J. L. and Lemmon, V. P. (2012). Isoform diversity and regulation in peripheral and central neurons revealed through RNA-Seq, PloS One, 7, e30417. https://doi.org/10.1371/journal.pone.0030417
- Li, B., Tsoi, L. C., Swindell,W. R., Gudjonsson, J. E., Tejasvi, T., Johnston, A., Ding, J., Stuart, P. E., Xing, X., Kochkodan, J. J., Voorhees, J. J., Kang, H. M., Nair, R. P., Abecasis, G. R. and Elder, J. T. (2014). Transcriptome analysis of psoriasis in a large case-control sample: RNA-seq provides insights into disease mechanisms, The Journal of Investigative Dermatology, 134, 1828-1838. https://doi.org/10.1038/jid.2014.28
- Li, J. J., Jiang, C. R., Brown, J. B., Huang, H. and Bickel, P. J. (2011). Sparse linear modeling of nextgeneration mRNA sequencing (RNA-Seq) data for isoform discovery and abundance estimation, Proceedings of the National Academy of Sciences of the United States of America, 108, 19867-19872. https://doi.org/10.1073/pnas.1113972108
- Li, W. and Jiang, T. (2012). Transcriptome assembly and isoform expression level estimation from biased RNA-Seq reads, Bioinformatics, 28, 2914-2921. https://doi.org/10.1093/bioinformatics/bts559
- Lin, Y., Reynolds, P. and Feingold, E. (2003). An empirical bayesian method for differential expression studies using one-channel microarray data, Statistical Applications in Genetics and Molecular Biology, 2, 8.
- Lin, Z., Puetter, A., Coco, J., Xu, G., Strong, M. J., Wang, X., Fewell, C., Baddoo, M., Taylor, C. and Flemington, E. K. (2012) Detection of murine leukemia virus in the Epstein-Barr viruspositive human B-cell line JY, using a computational RNA-Seq-based exogenous agent detection pipeline, PARSES, Journal of Virology, 86, 2970-2977. https://doi.org/10.1128/JVI.06717-11
- Ma, X. and Zhang, X. (2013). NURD: An implementation of a new method to estimate isoform expression from non-uniform RNA-seq data, BMC Bioinformatics, 14, 220. https://doi.org/10.1186/1471-2105-14-220
- Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M. and Gilad, Y. (2008). RNA-seq: An assessment of technical reproducibility and comparison with gene expression arrays, Genome Research, 18, 1509-1517. https://doi.org/10.1101/gr.079558.108
- Martin, J., Bruno, V. M., Fang, Z., Meng, X., Blow, M., Zhang, T., Sherlock, G., Snyder, M. and Wang, Z. (2010). Rnnotator: An automated de novo transcriptome assembly pipeline from stranded RNA-Seq reads, BMC Genomics, 11, 663. https://doi.org/10.1186/1471-2164-11-663
- Mezlini, A. M., Smith, E. J. M., Fiume, M., Buske, O., Savich, G., Shah, S., Aparicion, S., Chiang, D., Goldenberg, A. and Brudno, M. (2013). iReckon: Simultaneous isoform discovery and abundance estimation from RNA-seq data, Genome Research, 23, 519-529. https://doi.org/10.1101/gr.142232.112
- Mills, J. D., Nalpathamkalam, T., Jacobs, H. I., Janitz, C., Merico, D., Hu, P. and Janitz, M. (2013). RNA-Seq analysis of the parietal cortex in Alzheimer's disease reveals alternatively spliced isoforms related to lipid metabolism, Neuroscience Letters, 536, 90-95. https://doi.org/10.1016/j.neulet.2012.12.042
- Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. and Wold, B. (2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq, Nature Methods, 5, 621-628. https://doi.org/10.1038/nmeth.1226
- Nariai, N., Hirose, O., Kojima, K. and Nagasaki, M. (2013). TIGAR: Transcript isoform abundance estimation method with gapped alignment of RNA-Seq data by variational Bayesian inference, Bioinformatics, 29, 2292-2299. https://doi.org/10.1093/bioinformatics/btt381
- Nariai, N., Kojima, K., Mimori, T., Sato, Y., Kawai, Y., Yamaguchi-Kabata, Y. and Nagasaki, M. (2014). TIGAR2: Sensitive and accurate estimation of transcript isoform expression with longer RNA-Seq reads, BMC Genomics, 15, S5.
- Nicolae, M., Mangul, S., Mandoiu, I. I. and Zelikovsky, A. (2011). Estimation of alternative splicing isoform frequencies from RNA-Seq data, Algorithms for Molecular Biology: AMB, 6, 9. https://doi.org/10.1186/1748-7188-6-9
- Nishiu, M., Yanagawa, R., Nakatsuka, S., Yao, M., Tsunoda, T., Nakamura, Y. and Aozasa, K. (2002). Microarray analysis of gene-expression profiles in diffuse large B-cell lymphoma: Identification of genes related to disease progression, Japanese Journal of Cancer Research: Gann, 93, 894-901. https://doi.org/10.1111/j.1349-7006.2002.tb01335.x
- Niu, L., Huang, W., Umbach, D. M. and Li, L. (2014). IUTA: A tool for effectively detecting differential isoform usage from RNA-Seq data, BMC Genomics, 15, 862. https://doi.org/10.1186/1471-2164-15-862
- Oh, S., Song, S., Grabowski, G., Zhao, H. and Noonan, J. P. (2013). Time series expression analyses using RNA-seq: A statistical approach, BioMed Research International, 2013, 203681.
- Oshlack, A., Robinson, M. D. and Young, M. D. (2010). From RNA-seq reads to differential expression results, Genome Biology, 11, 220. https://doi.org/10.1186/gb-2010-11-12-220
- Pandey, R. V., Franssen, S. U., Futschik, A. and Schlotterer, C. (2013). Allelic imbalance metre (Allim), a new tool for measuring allele-specific gene expression with RNA-seq data, Molecular Ecology Resources, 13, 740-745. https://doi.org/10.1111/1755-0998.12110
- Patro, R., Mount, S. M. and Kingsford, C. (2014) Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms, Nature Biotechnology, 32, 462-464. https://doi.org/10.1038/nbt.2862
- Pollier, J., Rombauts, S. and Goossens, A. (2013). Analysis of RNA-Seq data with TopHat and Cufflinks for genome-wide expression analysis of jasmonate-treated plants and plant cultures, Methods in Molecular Biology, 1011, 305-315. https://doi.org/10.1007/978-1-62703-414-2_24
- Rehrauer, H., Opitz, L., Tan, G., Sieverling, L. and Schlapbach, R. (2013). Blind spots of quantitative RNA-seq: The limits for assessing abundance, differential expression, and isoform switching, BMC Bioinformatics, 14, 370. https://doi.org/10.1186/1471-2105-14-370
- Roberts, A., Trapnell, C., Donaghey, J., Rinn, J. L. and Pachter, L. (2011). Improving RNA-Seq expression estimates by correcting for fragment bias, Genome Biology, 12, R22. https://doi.org/10.1186/gb-2011-12-3-r22
- Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010). edgeR: A Bioconductor package for 198 Sunghee Oh differential expression analysis of digital gene expression data, Bioinformatics, 26, 139-140. https://doi.org/10.1093/bioinformatics/btp616
- Robinson, M. D. and Oshlack, A. A. (2010). Scaling normalization method for differential expression analysis of RNA-seq data, Genome Biology, 11, R25. https://doi.org/10.1186/gb-2010-11-3-r25
- Ryan, M. C., Cleland, J., Kim, R., Wong, W. C. and Weinstein, J. N. (2012). SpliceSeq: A resource for analysis and visualization of RNA-Seq data on alternative splicing and its functional impacts, Bioinformatics, 28, 2385-2387. https://doi.org/10.1093/bioinformatics/bts452
- Safikhani, Z., Sadeghi, M., Pezeshk, H. and Eslahchi, C. (2013). SSP: An interval integer linear programming for de novo transcriptome assembly and isoform discovery of RNA-seq reads, Genomics, 102, 507-514. https://doi.org/10.1016/j.ygeno.2013.10.003
- Satoh, J., Yamamoto, Y., Asahina, N., Kitano, S. and Kino, Y. (2014). RNA-Seq data mining: Downregulation of NeuroD6 serves as a possible biomarker for alzheimer's disease brains, Disease Markers, 2014, 123165.
- Shen, S., Park, J. W., Huang, J., Dittmar, K. A., Lu, Z. X., Zhou, Q., Carstens, R. P. and Xing, Y. (2012). MATS: A Bayesian framework for flexible detection of differential alternative splicing from RNA-Seq data, Nucleic Acids Research, 40, e61. https://doi.org/10.1093/nar/gkr1291
- Shen, S., Park, J. W., Lu, Z. X., Lin, L., Henry, M. D., Wu, Y. N., Zhou, Q. and Xing, Y. (2014). rMATS: Robust and flexible detection of differential alternative splicing from replicate RNASeq data, Proceedings of the National Academy of Sciences of the United States of America, 111, E5593-5601. https://doi.org/10.1073/pnas.1419161111
- Shi, Y. and Jiang, H. (2013). rSeqDiff: Detecting differential isoform expression from RNA-Seq data using hierarchical likelihood ratio test, PloS One, 8, e79448. https://doi.org/10.1371/journal.pone.0079448
- Skelly, D. A., Johansson, M., Madeoy, J., Wakefield, J. and Akey, J. M. (2011). A powerful and flexible statistical framework for testing hypotheses of allele-specific gene expression from RNAseq data, Genome Research, 21, 1728-1737. https://doi.org/10.1101/gr.119784.110
- Stegle, O., Denby, K. J., Cooke, E. J., Wild, D. L., Ghahramani, Z. and Borgwardt, K. M. (2010). A robust Bayesian two-sample test for detecting intervals of differential gene expression in microarray time series, Journal of Computational Biology : A Journal of Computational Molecular Cell Biology, 17, 355-367. https://doi.org/10.1089/cmb.2009.0175
- Suo, C., Calza, S., Salim, A. and Pawitan, Y. (2014). Joint estimation of isoform expression and isoform-specific read distribution using multisample RNA-Seq data, Bioinformatics, 30, 506-513. https://doi.org/10.1093/bioinformatics/btt704
- Tarazona, S., Garcia-Alcalde, F., Dopazo, J., Ferrer, A. and Conesa, A. (2011). Differential expression in RNA-seq: A matter of depth, Genome Research, 21, 2213-2223. https://doi.org/10.1101/gr.124321.111
- Trapnell, C., Pachter, L. and Salzberg, S. L. (2009). TopHat: Discovering splice junctions with RNASeq, Bioinformatics, 25, 1105-1111. https://doi.org/10.1093/bioinformatics/btp120
- Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L. and Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks, Nature Protocols, 7, 562-578. https://doi.org/10.1038/nprot.2012.016
- Trapnell, C., Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J. and Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation, Nature Biotechnology, 28, 511-515. https://doi.org/10.1038/nbt.1621
- Vardhanabhuti, S., Li, M. and Li, H. A. (2013). Hierarchical Bayesian Model for Estimating and Inferring Differential Isoform Expression for Multi-Sample RNA-Seq Data, Statistics in Biosciences, 5, 119-137. https://doi.org/10.1007/s12561-011-9052-3
- Vitting-Seerup, K., Porse, B. T., Sandelin, A. and Waage, J. (2014). spliceR: An R package for classification of alternative splicing and prediction of coding potential from RNA-seq data, BMC Bioinformatics, 15, 81. https://doi.org/10.1186/1471-2105-15-81
- Wagner, G. P., Kin, K. and Lynch, V. J. (2012). Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples, Theory in Biosciences = Theorie in den Biowissenschaften, 131, 281-285. https://doi.org/10.1007/s12064-012-0162-3
- Wang, L., Feng, Z., Wang, X., Wang, X. and Zhang, X. (2010a). DEGseq: An R package for identifying differentially expressed genes from RNA-seq data, Bioinformatics, 26, 136-138. https://doi.org/10.1093/bioinformatics/btp612
- Wang, L., Xi, Y., Yu, J., Dong, L., Yen, L. and Li, W. (2010b). A statistical method for the detection of alternative splicing using RNA-seq, PloS One, 5, e8529. https://doi.org/10.1371/journal.pone.0008529
- Wang, R., Sun, L., Bao, L., Zhang, J., Jiang, Y., Yao, J., Song, L., Feng, J., Liu, S. and Liu, Z. (2013). Bulk segregant RNA-seq reveals expression and positional candidate genes and allele-specific expression for disease resistance against enteric septicemia of catfish, BMC Genomics, 14, 929. https://doi.org/10.1186/1471-2164-14-929
- Wang, X., Wu, Z. and Zhang, X. (2010c). Isoform abundance inference provides a more accurate estimation of gene expression levels in RNA-seq, Journal of Bioinformatics and Computational Biology, 8, 177-192. https://doi.org/10.1142/S0219720010005178
- Warren, A.S., Aurrecoechea, C., Brunk, B., Desai, P., Emrich, S., Giraldo-Calderon, G. I., Harb, O., Hix, D., Lawson, D., Machi, D., Mao, C., McClelland, M., Nordberg, E., Shukla, M., Vosshall, L. B., Wattam, A. R., Will, R., Yoo, H. S. and Sobral, B. (2015). RNA-Rocket: An RNA-Seq analysis resource for infectious disease research, Bioinformatics, 31.
- Wu, Z., Wang, X. and Zhang, X. (2011). Using non-uniform read distribution models to improve isoform expression inference in RNA-Seq, Bioinformatics, 27, 502-508. https://doi.org/10.1093/bioinformatics/btq696
- Yalamanchili, H. K., Li, Z., Wang, P., Wong, M. P., Yao, J. and Wang, J. (2014). SpliceNet: Recovering splicing isoform-specific differential gene networks from RNA-Seq data of normal and diseased samples, Nucleic Acids Research, 42, e121. https://doi.org/10.1093/nar/gku577
- Young, M. D., Wakefield, M. J., Smyth, G. K. and Oshlack, A. (2010). Gene ontology analysis for RNA-seq: Accounting for selection bias, Genome Biology, 11, R14. https://doi.org/10.1186/gb-2010-11-2-r14
- Zhang, J., Kuo, C. C. and Chen, L. (2014). WemIQ: An accurate and robust isoform quantification method for RNA-seq data, Bioinformatics, 30. The cytochrome P450 genes of channel catfish: Their involvement in disease defense responses as revealed by meta-analysis of RNA-Seq data sets, Biochim Biophys Acta, 1840, 2813-2828. https://doi.org/10.1016/j.bbagen.2014.04.016
- Zhang, Y., Lameijer, E. W., 't Hoen, P. A., Ning, Z., Slagboom, P. E. and Ye, K. (2012). PASSion: A pattern growth algorithm-based pipeline for splice junction detection in paired-end RNA-Seq data, Bioinformatics, 28, 479-486. https://doi.org/10.1093/bioinformatics/btr712
- Zhao, H., Chan, K. L., Cheng, L. M. and Yan, H. (2008). Multivariate hierarchical Bayesian model for differential gene expression analysis in microarray experiments, BMC Bioinformatics, 9, S9.
- Zhao, K., Lu, Z. X., Park, J. W., Zhou, Q. and Xing, Y. (2013). GLiMMPS: Robust statistical model for regulatory variation of alternative splicing using RNA-seq data, Genome Biology, 14, R74. https://doi.org/10.1186/gb-2013-14-7-r74
Cited by
- Identifying differentially expressed genes using the Polya urn scheme vol.24, pp.6, 2017, https://doi.org/10.29220/CSAM.2017.24.6.627