DOI QR코드

DOI QR Code

Properties of Reducing On-resistance for JFET Region in Power MOSFET by Double Ion Implantation

JFET 영역의 이중이온 주입법을 이용한 Power MOSFET의 온저항 특성에 관한 연구

  • 김기현 (메이플세미컨덕터 신사업본부) ;
  • 김정한 (메이플세미컨덕터 신사업본부) ;
  • 박태수 (메이플세미컨덕터 신사업본부) ;
  • 정은식 (메이플세미컨덕터 신사업본부) ;
  • 양창헌 (메이플세미컨덕터 신사업본부)
  • Received : 2015.02.03
  • Accepted : 2015.03.19
  • Published : 2015.04.01

Abstract

Device model parameters are very important for accurate estimation of electrical performances in devices, integrated circuits and their systems. There are a large number of methods for extraction of model parameters in power MOSFETs. For high efficiency, design is important considerations of a power MOSFET with high-voltage applications in consumer electronics. Meanwhile, it was proposed that the efficiency of a MOSFET can be enhanced by conducting JFET region double implant to reduce the On-resistance of the transistor. This paper reports the effects of JFET region double implant on the electrical properties and the decreasing On-resistance of the MOSFET. Experimental results show that the 1st JFET region implant diffuse can enhance the On-resistance by decreasing the ion concentration due to the surface and reduce the On-resistance by implanting the 2nd Phosphorus to the surface JFET region.

Keywords

References

  1. G. Borionetti, D. Gambaro, S. Santi, M. Borgini, P. Godio, and S. Pizzini, Mater. Sci. Eng. B, B73, 218 (2000).
  2. D. K. Schroder (New Jersey Wiley, Hoboken, 2006).
  3. A. Michez, J. Boch, S. Dhombres, and F. Saigne, Microelectron Reliab., 53, 1306 (2013). https://doi.org/10.1016/j.microrel.2013.07.022
  4. H. Chen, B. Ji, V. Pickert, and W. Cao, IEEE Trans Dev Mater Reliab, 14, 220 (2014). https://doi.org/10.1109/TDMR.2013.2292547
  5. Y. Ozcelep and A. Kuntman, Microelectron Int., 29, 141 (2012). https://doi.org/10.1108/13565361211252890
  6. K. N. Quader, C. C. Li, R. Tu, E. Rosenbaum, P. K. Ko, and C. Hu, IEEE Trans Electron Dev., 40, 2245 (1993). https://doi.org/10.1109/16.249472
  7. R. Habchi, C. Salame, P. Mialhe, and A. Khoury, Microelectron Reliab, 47, 1296 (2007). https://doi.org/10.1016/j.microrel.2006.09.044
  8. B. Bernoux, R. Escoffier, and P. Jalbaud, IEEE International Symposium on Industrial Electronics, 2016 (2009).
  9. F. Djahli, M. Bouchemat, and M. Kahouadji, Microelectron J, 31, 333 (1999).
  10. M. R. Seacrist, Gate Dielectric Integrity: Material Process and Tool Qualification, 102 (2000).
  11. J. Niccol, Solid State Phenomena, 145, 155 (2009).
  12. D. Ueda, H. Takagi, and G. Kano, IEEE Trans Electron Dev., ED-32, 2 (1985).
  13. W. S. Tam, S. L. Siu, B. L. Yang, C. W. Kok, and H. Wong, Microelectronics Reliability, 51, 2064 (2011). https://doi.org/10.1016/j.microrel.2011.07.060
  14. S. Kumar and S. Jha, Microelectronics Journal, 44, 884 (2013).
  15. E. Pomes, J. M. Reynes, P. Tounsia, and J. M. Dorkel, Materials Science and Engineering: B, 177, 1362 (2012). https://doi.org/10.1016/j.mseb.2012.03.011