DOI QR코드

DOI QR Code

Design of a Predistorter with Multiple Coefficient Sets for the Millimeter-Wave Power Amplifier and Nonlinearity Elimination Performance Evaluation

다중계수 방식을 적용한 밀리미터파 대역용 전력증폭기의 사전왜곡기 설계 및 비선형성 보상 성능 평가

  • Yuk, Junhyung (Department of Electronic Engineering, Sogang University) ;
  • Sung, Wonjin (Department of Electronic Engineering, Sogang University)
  • Received : 2015.07.24
  • Accepted : 2015.08.31
  • Published : 2015.08.31

Abstract

Recently, mobile communication systems using the millimeter-wave frequency band have been proposed, and the importance of efficient compensation of the nonlinearity caused by 60 GHz high-power amplifiers(HPAs) is increasing. In this paper, we propose a predistorter structure based on multiple coefficient sets which are separately used to different ranges of input power values. These ranges correspond to varying levels of nonlinearity characteristics. The structure is applied to the 60 GHz HPA FMM5715X and the performance of correcting the nonlinearity of LTE signals is evaluated. Evaluation results using a hardware testbed demonstrate that the proposed predistorter structure achieves the maximum of 6 dB gain over the conventional method in terms of the adjacent channel leakage ratio(ACLR).

최근 밀리미터파 대역을 활용하는 이동통신시스템이 제안되고 있으며, 60 GHz 대역 전력증폭기로 인해 발생하는 비선형성을 효율적으로 보상하기 위한 방법의 중요성이 증가하고 있다. 본 논문에서는 전력증폭기의 비선형성이 상대적으로 작은 구간과 큰 구간으로 구분하여 계수를 사용하는 다중계수 사전왜곡기 구조를 제안하고, 이를 60 GHz 대역 고출력 전력증폭기 FMM5715X에 적용하여 LTE 신호의 선형성 보상 성능을 평가하였다. 하드웨어 테스트베드를 활용한 성능평가를 통해, 기존 방식 대비 제안 방식은 ACLR(Adjacent Channel Leakage Ratio) 측면에서 최대 6 dB 개선됨을 보인다.

Keywords

References

  1. S. G Glisic, Advanced Wireless Communications, 4G Technologies, Wiley, 2004.
  2. N. Guo, R. C. Qiu, S. Mo, and K. Takahashi, "60-GHz millimeter-wave radio: Principle, technology, and new results", EURASIP J. Wireless Commun. and Networking, vol. 2007, no. 1, pp. 48-48, Jan. 2007.
  3. J. Wells, "Faster than fiber: The future of multi-Gb/s wireless", IEEE Microwave Mag., vol. 10, no. 3, pp. 104- 112, May 2009. https://doi.org/10.1109/MMM.2009.932081
  4. D. Lockie, D. Peck, "High-data-rate millimeter- wave radios", IEEE Microwave Mag., vol. 10, no. 5, pp. 75-83, Aug. 2009. https://doi.org/10.1109/MMM.2009.932834
  5. A. A. M. Saleh, "Frequency-independent and frequencydependent nonlinear models of TWT amplifier", IEEE Trans. Commun., vol. 29, no. 11, pp. 1715-1720, Nov. 1981. https://doi.org/10.1109/TCOM.1981.1094911
  6. C. Rapp, "Effects of HPA-nonlinearity on a 4-DPSK/ OFDM-signal for a digital sound broad- casting signal", in Proc. ECSC-2, vol. 1, pp. 179-184, Oct. 1991.
  7. P. B. Kenington, "Linearized transmitters: An enabling technology for software defined radio", IEEE Comm. Magazine, vol. 40, no. 2, pp. 156-162, Feb. 2002. https://doi.org/10.1109/35.983923
  8. A. S. Wright, W. G. Durtler, "Experimental performance of an adaptive digital linearized power amplifier", IEEE Trans. Veh. Technol., vol. 41, no. 4, pp. 395-400, Nov. 1992. https://doi.org/10.1109/25.182589
  9. M. Ghaderi, S. Kumar, and D. E. Dodds, "Fast adaptive polynomial I and Q predistorter with global optimization", IEE Proc. Commun., vol. 143, no. 2, pp. 78-86, Apr. 1996. https://doi.org/10.1049/ip-com:19960237
  10. J. Kim, P. Roblin, X. Yang, and D. Chaillot, "A new architecture for frequency selective digital predistortion linearization for RF power amplifiers", IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012.
  11. C. Quindroit, N. Naraharisetti, P. Roblin, S. Gheitanchi, V. Mauer, and M. Fitton, "Concurrent dual-band digital predistortion for power amplifier based on orthogonal polynomials", IEEE MTT-S Int. Microw. Symp. Dig., 2013.
  12. C. Eun, E. J. Powers, "A new Volterra predistorter based on the indirect learning architecture", IEEE Trans. Signals Process, vol. 45, no. 1, pp. 223-227, Jan. 1997. https://doi.org/10.1109/78.552219
  13. A. Zhu, J. C. Pedro, and T. J. Brazil, "Dynamic deviation reduction based Volterra behavioral modeling of RF power amplifiers", IEEE Trans. Microw. Theory Tech., vol. 54, no. 12, pp. 4323-4332, Dec. 2006. https://doi.org/10.1109/TMTT.2006.883243
  14. J. Kim, "Digital predistortion of wideband signal base on power amplifier model with memory", Electron. Lett., vol. 37, pp. 1417-1418, Nov. 2001. https://doi.org/10.1049/el:20010940
  15. M. Rawat, F. M. Ghannouchi, and K. Rawat, "Threelayered biased memory polynomial for dynamic modeling and predistortion of transmitters with memory", IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 3, pp. 768-777, Mar. 2013. https://doi.org/10.1109/TCSI.2012.2215740
  16. M. Sun, Q. Song, B. Li, L. Zhao, and C. Zhao, "Nonlinear estimation for 60 GHz millimeter-wave radar system based on Bayesian particle filtering", EURASIP J. Wireless Commun. and Networking, vol. 2013, no. 1, pp. 1-9, Feb. 2013. https://doi.org/10.1186/1687-1499-2013-1
  17. B. Widrow, J. McCool, and M. Ball, "The complex LMS algorithm", IEEE Proceedings, vol. 63, pp 719- 720, Apr. 1975. https://doi.org/10.1109/PROC.1975.9807