DOI QR코드

DOI QR Code

수정된 전역통과 필터를 이용한 2~6 GHz 광대역 GaN HEMT 전력증폭기 MMIC

2~6 GHz Wideband GaN HEMT Power Amplifier MMIC Using a Modified All-Pass Filter

  • Lee, Sang-Kyung (Department of Radio Science and Engineering, Chungnam National University) ;
  • Kim, Dong-Wook (Department of Radio Science and Engineering, Chungnam National University)
  • 투고 : 2015.06.24
  • 심사 : 2015.06.30
  • 발행 : 2015.07.30

초록

본 논문에서는 2차 전역통과 필터를 이용하여 입력정합을 수행하고, LC 병렬공진 회로를 이용하여 트랜지스터의 출력 리액턴스를 최소화하는 기법을 적용함으로써 2~6 GHz에서 동작하는 광대역 GaN 전력증폭기 MMIC를 설계 및 제작하였다. 광대역 손실정합을 위해 사용된 2차 전역통과 필터는 트랜지스터의 채널 저항 효과를 보상하기 위해 비대칭적 구조를 사용하였다. Win Semiconductors사의 $0.25{\mu}m$ GaN HEMT 파운드리 공정으로 제작된 MMIC 칩은 크기가 $2.6mm{\times}1.3mm$이며, 주파수 대역 내에서 약 13 dB의 평탄한 이득 특성과 10 dB 이상의 우수한 입력정합 특성을 보였다. 포화출력 조건에서 측정된 출력전력은 2~6 GHz에서 38.6~39.8 dBm의 값을 보였고, 전력부가효율은 31.3~43.4 %을 나타내었다.

In this paper, a 2~6 GHz wideband GaN power amplifier MMIC is designed and fabricated using a second-order all-pass filter for input impedance matching and an LC parallel resonant circuit for minimizing an output reactance component of the transistor. The second-order all-pass filter used for wideband lossy matching is modified in an asymmetric configuration to compensate the effect of channel resistance of the GaN transistor. The power amplifier MMIC chip that is fabricated using a $0.25{\mu}m$ GaN HEMT foundry process of Win Semiconductors, Corp. is $2.6mm{\times}1.3mm$ and shows a flat linear gain of about 13 dB and input return loss of larger than 10 dB. Under a saturated power mode, it also shows output power of 38.6~39.8 dBm and a power-added efficiency of 31.3~43.4 % in 2 to 6 GHz.

키워드

참고문헌

  1. R. J. Trew, "Wide bandgap semiconductor transistors for microwave power amplifiers", IEEE Microwave Magazine, vol. 1, no. 1, pp. 46-54, Mar. 2000. https://doi.org/10.1109/6668.823827
  2. D. W. Runton, B. Trabert, J. B. Shealy, and R. Vetury, "History of GaN: high-power RF gallium nitride(GaN) from infancy to manufacturable process and beyond", IEEE Microwave Magazine, vol. 14, no. 3, pp. 82-93, May 2013. https://doi.org/10.1109/MMM.2013.2240853
  3. 김동욱, "전자전 증폭장치", 한국전자파학회 전자파기술, 24(6), pp. 25-36, 2013년 11월.
  4. M. A. Gonzalez-Garrido, J. Grajal, P. Cetronio, C. Lanzieri, and M. Uren, "2-6 GHz GaN MMIC power amplifiers for electronic warfare applications", The 3rd Eu-MIC Conference, pp. 83-86, Oct. 2008.
  5. C. Campbell, C. Lee, V. Williams, M. -Y. Kao, H. -Q. Tserng, P. Saunier, and T. Balisteri, "A wideband power amplifier MMIC utilizing GaN on SiC HEMT technology", IEEE Journal of Solid-State Circuits, vol. 44, no. 10, pp. 2640-2647, Oct. 2009. https://doi.org/10.1109/JSSC.2009.2026824
  6. P. Saad, C. Fager, H. Cao, H. Zirath, and K. Andersson, "Design of a highly efficient 2-4 GHz octave bandwidth GaN-HEMT power amplifier", IEEE Trans. Microwave Theory and Techniques, vol. 58, no. 7, pp. 1677-1685, Jul. 2010. https://doi.org/10.1109/TMTT.2010.2049770
  7. R. Giofre, P. Colantonio, and F. Giannini, "1-6 GHz ultrawideband 4 W single-ended GaN power amplifier", Microwave and Optical Technology Letters, vol. 56, no. 1, pp. 215-217, Jan. 2014. https://doi.org/10.1002/mop.28080
  8. Win Semiconductors Corp., Process Roadmap, $0.25{\mu}m$ GaN HEMT, http://www.winsemiconductorscorp.com, Dec. 2013.
  9. Thomas Arell, Thongchai(Lucky) Hongsmatip, "2-6 GHz commercial power amplifier", Applied Microwave Winter, pp. 51-56, 1993.
  10. Yasushi Itoh, Masatoshi Nii, Yasutaka Kohno, Mitsuru Mochizuki, and Tadashi Takagi, "A 4 to 25 GHz 0.5 W monolithic lossy match amplifier", IEEE MTT-S International Microwave Symposium Digest, pp. 257-260, Jun. 1994.
  11. Basem M. Abdrahman, Hesham N. Ahmed, and Khaled A. Shehata, "Design and implementation of a 9 W, 0.3-3.7 GHz linear power amplifier using GaN HEMT", IEEE 56th International Midwest Symposium on Circuits and Systems, pp. 594-597, Aug. 2013.