DOI QR코드

DOI QR Code

Cu(In,Ga)Se2 박막의 저온 성장 및 NaF 후속처리를 통한 태양전지 셀 특성 연구

Low-temperature Growth of Cu(In,Ga)Se2 Thin Film and NaF Post Deposition Treatment for Cu(In,Ga)Se2 Solar Cells

  • 김승태 (한국과학기술원 신소재공학과) ;
  • 정광선 (한국과학기술원 신소재공학과) ;
  • 윤재호 (한국에너지기술연구원 태양광발전팀) ;
  • 박병국 (한국과학기술원 신소재공학과) ;
  • 안병태 (한국과학기술원 신소재공학과)
  • Kim, Seung Tae (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jung, Gwang Seon (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Yun, Jae Ho (Photovoltaics Team, Korea Institute of Energy Research) ;
  • Park, Byong Guk (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ahn, Byung Tae (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • 투고 : 2015.02.23
  • 심사 : 2015.03.03
  • 발행 : 2015.03.31

초록

High efficiency $Cu(In,Ga)Se_2$ solar cells are generally prepared above $500^{\circ}C$. Lowering the process temperature can allow wider selection of substrate material and process window. In this paper, the three-stage co-evaporation process widely used to grow CIGS thin film at high temperature was modified to reduce the maximum substrate temperature. Below $400^{\circ}C$ the CIGS films show poor crystal growth and lower solar cell performance, in spite of external Na doping by NaF. As a new approach, Cu source instead of Cu with Se in the second stage was applied on the $(In,Ga)_2Se_3$ precursor at $400^{\circ}C$ and achieved a better crystal growth. The distribution of Ga in the films produce by new method were investigated and solar cells were fabricated using these films.

키워드

참고문헌

  1. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla, "Properties of $Cu(In,Ga)Se_2$ solar cells with new record efficiencies up to 21.7%", Physica status solidi (RRL) - Rapid Research Letters, Vol. 9, Issue 1, pp. 28-31, 2014. https://doi.org/10.1002/pssr.201409520
  2. I. Repins, M. Contreras, M. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. E. McCandless, and R. Noufi "Characterization of 19.9%-efficient CIGS absorbers", Photovoltaic Specialists Conference 2008. 33rd IEEE, pp. 1-6. IEEE. 2008.
  3. Y. M. Shin, C. S. Lee, D. H. Shin, H. S. Kwon, B. G. Park, and B. T. Ahn, "Surface modification of CIGS film by annealing and its effect on the band structure and photovoltaic properties of CIGS solar cells", Current Applied Physics, Vol. 15, No 1, pp. 18-24, 2015. https://doi.org/10.1016/j.cap.2014.09.023
  4. A. Chirila, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler, and A. N. Tiwari "Potassium - induced surface modification of $Cu(In,Ga)Se_2$ thin films for high-efficiency solar cells", Nature Materials, Vol. 12, pp.1107-1111, 2013. https://doi.org/10.1038/nmat3789
  5. P. Reinhard, A. Chirila, P. Blosch, F. Pianezzi, S. Nishiwaki, S. Buecheler, and A. N. Tiwari "Review of Progress Toward 20% Efficiency Flexible CIGS Solar Cells and Manufacturing Issues of Solar Modules", IEEE Journal of Photovoltaics, Vol. 3, No. 1, pp. 572-580, 2013. https://doi.org/10.1109/JPHOTOV.2012.2226869
  6. D. Rudmann, A. F. da Cunha, M. Kaelin, F. Kurdesau, H. Zogg, and A. N. Tiwari, G. Bilger "Efficiency enhancement of $Cu(In,Ga)Se_2$ solar cells due to post-deposition Na incorporation", Applied Physics Letters, Vol. 84, No. 7, pp. 1129-1131. 2004. https://doi.org/10.1063/1.1646758
  7. A. Laemmle, R. Wuerz, and M. Powalla "Efficiency enhancement of $Cu(In,Ga)Se_2$ thin-film solar cells by a post-deposition treatment with potassium fluoride", Physica status solidi (RRL) - Rapid Research Letters, Vol. 7, No. 9, pp. 631-634, 2013. https://doi.org/10.1002/pssr.201307238
  8. C. S. Lee, S. C. Kim, Y. M. Shin, B. G. Park, B .T. Ahn and H. S. Kwon, "Performance improvement in Cd-free $Cu(In,Ga)Se_2$ solar cells by modifying the electronic structure of the ZnMgO buffer layer", RSC Advances, Vol. 4, No. 69, pp. 36784-36790. 2014. https://doi.org/10.1039/C4RA07776H
  9. D. H. Shin, J. H. Kim, Y. M. Shin, K. H. Yoon, E. A. Al‐ Ammar, and B. T. Ahn, "Improvement of the cell performance in the $ZnS/Cu(In,Ga)Se_2$ solar cells by the sputter deposition of a bilayer ZnO: Al film", Progress in Photovoltaics: Research and Applications, Vol. 21, No. 2, pp. 217-225, 2013. https://doi.org/10.1002/pip.2319
  10. G. S. Jung, S. H. Mun, D. Shin, R. B. V. Chalapathy, B. T. Ahn & H. Kwon, "Fabrication of a smooth, large-grained $Cu(In,Ga)Se_2$ thin film using a $Cu(In,Ga)Se_3$ stacked precursor at low temperature for CIGS solar cells", RSC Advances, Vol. 5, No.10, pp. 7611-7618, 2015. https://doi.org/10.1039/C4RA13954B
  11. N. Kohara, T. Negami, M. Nishitani, and T. Wada, "Preparation of device-quality $Cu(In,Ga)Se_2$ thin films deposited by coevaporation with composition monitor", Japanese journal of applied physics, Vol. 34, No. 9A, pp. L1141-L1144, 1995. https://doi.org/10.1143/JJAP.34.L1141
  12. H. N. R. Shin, Y. M. Shin, J. H. Kim, J. H. Yun, B. K. Park, B. T. Ahn "Low - temperature Deposition of $Cu(In,Ga)Se_2$ Absorber using $Na_2S$ Underlayer", Current Photovoltaic Research Vol. 2, No.1, pp. 28-35, 2014. https://doi.org/10.21218/CPR.2014.2.1.028
  13. R. Scheer, H. W. Schock "Chalcogenide Photovoltaics: Physics, Technologies, and Thin Film Devices", John Wiley & Sons pp. 262-264, 2011.
  14. P. M. P. Salomel, V. Fjallstrom, P. Szaniawski, J. P. Leitao, A. Hultqvist, P. A. Fernandes, J. P. Teixeira, B. P. Falcao, U. Zimmermann, A. F. da Cunha, and M. Edoff "A comparison between thin film solar cells made from co‐evaporated $CuIn_{1-x}Ga_xSe_2$ using a one‐stage process versus a three‐stage process." Progress in Photovoltaics: Research and Applications. Vol. 23, Issue 4, pp. 470-478, 2015. https://doi.org/10.1002/pip.2453
  15. S. H. Wei, S. B. Zhang, and A. Zunger "Effects of Ga addition to $CuInSe_2$ on its electronic, structural, and defect properties", Applied Physics Letters, Vol. 72, No. 24, pp. 3199-3201, 1998. https://doi.org/10.1063/1.121548
  16. W. Witte, D. Abou-Ras, K. Albe, G. H. Bauer, F. Bertram, C. Boit, R. Brüggemann, J. Christen, J. Dietrich, A. Eicke, D. Hariskos, M. Maiberg, R. Mainz, M. Meessen, M. Muller, O. Neumann, T. Orgis, S. Paetel, J.Pohl, H. Rodriguez-Alvarez, R. Scheer, H. W. Schock, T. Unold, A. Weber, and M. Powalla "Gallium gradients in $Cu(In,Ga)Se_2$ thin‐film solar cells" Progress in Photovoltaics: Research and Applications, 2014.
  17. S. B. Zhang, S. H. Wei, A. Zunger, and H. Katayama-Yoshida, "Defect physics of the $CuInSe_2$ chalcopyrite semiconductor" Physical Review B, Vol. 57, No. 16, pp. 9642-9656, 1998. https://doi.org/10.1103/PhysRevB.57.9642