n-Butanol Extract of Mulberry Leaves Suppresses LPS-induced Inflammatory Cytokines and Modulates Osteogenic Differentiation in Periodontal Ligament Cells

뽕잎 n-부탄올 추출물의 치주인대세포에서 LPS로 유도된 염증성 사이토카인의 억제와 골 형성 분화 조절

  • Choi, Jeong Lee (Division of Oral and Maxillofacial Surgery, Department of Dentistry, Ajou University School of Medicine) ;
  • Kim, Dae Keun (College of Pharmacy, Woosuk University) ;
  • Kim, Eun Hee (Department of dental Hygiene Gangneung Yeongdong University) ;
  • Lee, Jeong Keun (Division of Oral and Maxillofacial Surgery, Department of Dentistry, Ajou University School of Medicine)
  • Received : 2015.11.14
  • Accepted : 2015.11.24
  • Published : 2015.12.31

Abstract

Periodontitis is a chronic inflammatory disease that is known to have the characteristics of destructed periodontal tissue. Anti-oxidant and anti-inflammatory effects of mulberry leaves in periodontal tissue is not well known until now. We investigated the effects of n-butanol extract of mulberry leaves on the lipopolysaccharide (LPS)-induced proinflammatory cytokines, such as $IL-1{\beta}$, IL-6, IL-8 and modulates osteogenic differentiation in periodontal ligament cells. The expression levels of Runx2, ALP and mRNA were increased by n-butanol extract of mulberry leaves at the concentration of $100{\mu}g/ml$ in periodontal ligament cells. n-Butanol extract of mulberry leaves extract reduced the range of pathophysiological processes, such as inflammation and increase in the level of osteogenic-related genes. These findings suggest that n-butanol extract of mulberry leaves has therapeutic effects on periodontitis and periodontal tissue regeneartion.

Keywords

References

  1. Jiang, Y., Mehta, C. K., Hsu, T. Y. and Alsulaimani, F. F. (2002) Bacteria induce osteoclastogenesis via an osteoblastindependent pathway. Infect. Immun. 70: 3143-3148. https://doi.org/10.1128/IAI.70.6.3143-3148.2002
  2. Nakashima, T., Kobayashi, Y., Yamasaki, S., Kawakami, A., Eguchi, K., Sasaki, H. and Sakai, H. (2000) Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-kappaB ligand: modulation of the expression by osteotropic factors and cytokines. Biochem. Biophys. Res. Commun. 7: 768-775.
  3. Graves, D. T., Oates, T. and Garlet, G. P. (2011) Review of osteoimmunology and the host response in endodontic and periodontal lesions. J. Oral Microbiol. 3: 1-15.
  4. Snyderman, R. (1971) Periodontal disease: Amodel for the study of inflammation. J. Infect. Dis. 123: 676-677. https://doi.org/10.1093/infdis/123.6.676
  5. Page, R. C. (1991) The role of inflammatory mediators in the pathogenesis of periodontal disease. J. Periodontal Res. 230-242.
  6. Wilson, M. (1995) Biological activities of lipopolysaccharide from oral bacteria and their relevance to the pathogenesis of chronic periodontitis. Sci. Pog. 78: 19-34.
  7. Yamaji, Y., Kubota, T., Sasaguri, K., Sato, S., Suzuki, Y., Kumada, H. and Umemoto, T. (1995) Inflammatory cytokine gene expression in human periodonal ligament fibroblasts stimulated with bacterial lipopolysaccharides. Infect. Immun. 63: 3576-3581.
  8. Emingil, G., Atilla, G., Sorsa, T., Luoto, H., Kirilmaz, L. and Baylas, H. (2004) The effect of adjunctive low-dose doxycycline therapy on clinical parameters and gingival crevicular fluid matrx metalloproteinase-8 levels in chronic periodontitis. J Periodontol. 75: 106-15. https://doi.org/10.1902/jop.2004.75.1.106
  9. Choi, D. H., Moon, I. S., Choi, B. K., Park, J. Won., Kim, Y. S., Choi, S. H. and Kim, C. K. (2004) Effect of sub-antimicrobial dose doxycycline therapy on crevicular fluid MMP-8, and gingival tissue MMP-9, TIMP-1 and IL-6 levels in chronic periodontitis. J. Periodont Res. 39: 20-26. https://doi.org/10.1111/j.1600-0765.2004.00696.x
  10. Jang, H. S., Park, M. G., Kook, J. K., Kim, H. S. and Kim, B. O. (2005) Antimicrobial effect of cefixime on 6 species of periodotopathogens. J. Korean Acad. Periodontol. 35: 401-411. https://doi.org/10.5051/jkape.2005.35.2.401
  11. Park, S. P., Chung, H. J., Kim, Y. J. and Kim, O. S. (2004) Triclosan inhibition of prostaglandin E2 production in human gingival fibroblast. J Korean Acad. Periodontol. 34: 345-356. https://doi.org/10.5051/jkape.2004.34.2.345
  12. Helgeland, K., Heyden, G. and Rolla, G. (1971) Effect of chlorhexidine on animal cells in vitro. Scan J. Dent. Res. 79: 209-215.
  13. Pucher, J. J. and Daniel, J. C. (1993) The effects of chlorhexidine digluconate on human 3ibroblasts in vitro. J. Periodont. 62: 526-532.
  14. Kim, T. I., Choi, E. J., Chung, C. P., Han, S. B. and Ku, Y. (2002) Antimicorbial effect of Zea mays L. and Magnoliae cortex extract mixtures on periodontal pathogen and effect on human gingival fibroblast cellular activity. J. Korean Acad. Periodontol. 32: 249-255. https://doi.org/10.5051/jkape.2002.32.1.249
  15. Kang, J. G., You, H. K. and Shin, H. S. (1998) Effect of extract of seeds of Carthamus tinctorius L. on mineralization in periodontal ligament cells and osteoblastic cells. J. Korean Acad. Periodontol. 28: 475-489. https://doi.org/10.5051/jkape.1998.28.3.475
  16. Choi, S. R., You, D. H., Kim, J. Y., Park, C. B., Kim, D. H. and Ryu, J. (2009) Antioxidant activity of methanol extracts from Curdrania tricuspidata Breau according to harvesting parts and time. Korea J. Medical Crop Sci. 17: 115-120.
  17. Oh, P. S. and Lim, K. T. (2011) Anti-inflammatory effect of glycoprotein isolated from Curdrania tricuspidata Breau: involvment of MAPK/NF-kB signaling. Immunol. Invest. 40: 76-91. https://doi.org/10.3109/08820139.2010.516049
  18. Kang, D. G., Hur, T. Y. and Lee, G. M. (2002) Effects of Curdrania tricuspidata water extract on blood pressure and renal functions in NO-dependent hypertention. Life Sci. 70: 2599-2609. https://doi.org/10.1016/S0024-3205(02)01547-3
  19. Hausmann, E. and Luderitz, O. (1975) Structural requirement for bone resorption by endotoxin and lipoteichoic acid. J. Dent. Res. 54: 94-99. https://doi.org/10.1177/00220345750540023401
  20. Nishimura, K., Noguchi, Y., Shigeyama, Y., Naito, M., Fukazawa, E. and Yamaoka, A. (1991) An ultrastructural study comparing new gingival tissue attachment on chemically exposed fibrils and retained periodontal ligament. J. Osaka Dent. Univ. 25: 63-75.
  21. Kai, K. (1989) SEM study of vascular architecture of periodontal ligament under chronic marginal periodontitis. Kanagawa Shigaku 24: 273-1989.
  22. Moskow, B. S. (1992) A histomorphologic study of the effects of periodontal inflammation on the maxillary sinus mucosa. J. Periodontol. 63: 674-681. https://doi.org/10.1902/jop.1992.63.8.674
  23. Nam, D. E., Kim, O. K. and Lee, J. (2013) Therapeutic effect of Curdrania tricuspidata leaf extract on osteoarthritis. J. Korean Soc. Food Nutr. 42: 697-704. https://doi.org/10.3746/jkfn.2013.42.5.697
  24. Jonsson, D., Nebel, D., Bratthall, G. and Nilsson, B. O. (2011) The human periodontal ligament cell: a fibroblast-like cell acting as an immune cell. J. Periodontal Res. 46: 153-157. https://doi.org/10.1111/j.1600-0765.2010.01331.x
  25. Teng, Y. T., Nguyen, H., Gao, X., Kong, Y. Y., Gorc zynski, R. M., Sinh, B., Ellen, R. P. and Penninger, J. M. (2000) Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. J. Clin. Invest. 106: R59-R67. https://doi.org/10.1172/JCI10763
  26. Kikuchi, T., Matsuguchi, T., Tsuboi, N., Mitani, A., Tanaka, S., Matsuoka, M., Yamamoto, G., Hishikawa, T., Noguchi, T. and Yoshikai, Y. (2001) Gene expression of osteoclast differentiation factor is induced by lipopolysaccharide in mouse osteoblasts via toll-like receptors. J. Immunol. 166: 3574-3579. https://doi.org/10.4049/jimmunol.166.5.3574
  27. Jiang, Y., Mehta, C, K., Hsu, T, Y. and Alsulaimani, F. H. (2002) Bacteria induce osteoclastogenesis via an osteoblastindependent pathway. Infect. Immun. 70: 6 3143-3148. https://doi.org/10.1128/IAI.70.6.3143-3148.2002
  28. Kanichiro, K., Naoyuki, T., Eijiro, J., Nobuyuki, U., Masamichi, T., Shigeru, K., Nobuaki, N., Masahiko, K., Kyoji, Y., Nobuyuki, S., Hisataka, Y., Tomonori, M., Kanji, H., Martind., T. J. and Tatsuo, S. (2000) Tumor necrosis factor ${\alpha}$ stimulates osteoclast differentiation by a mechanism independent of the Odf/Rankl-Rank interaction. J. Exp. Med. 191: 275-286. https://doi.org/10.1084/jem.191.2.275
  29. Zou, W. and Bar-Shavit, Z, (2002) Dual modulation of osteoclast differentistion by lipopolysaccharide. J. Bone Miner. Res. 17: 1211-1218. https://doi.org/10.1359/jbmr.2002.17.7.1211
  30. Kanami, I., Nobuyuki, U., Kanichiro, K., Koji, S., Xiaotong, L., Masamichi, T., Nobuo, O., Tatsuji, N. and Naoyuki, T. (2003) Lipopolysaccharide promotes the survival of osteoclasts via toll-like receptor 4, but cytokine production of osteoclasts in response to lipopolysaccharide is different from that of macrophages. J. Immunol. 170: 3688-3695. https://doi.org/10.4049/jimmunol.170.7.3688