Effect of Cynandione A of Cynanchi Wilfordii Radix in RANKL and Lipopolysaccharide-induced on Osteoclastogeneis in RAW 264.7 Cells

백하수오(Cynanchi Wilfordii Radix)의 Cynandione A가 RAW 264.7 세포에서 RANKL과 LPS로 유도된 파골세포형성에 대한 영향

  • Hwang, Joon-Ho (Biotechnology Regional Innovation Center, Jeju National University) ;
  • Yi, Mi-Ran (Biotechnology Regional Innovation Center, Jeju National University) ;
  • Kang, Chang-Hee (Biotechnology Regional Innovation Center, Jeju National University) ;
  • Bu, Hee-Jung (Biotechnology Regional Innovation Center, Jeju National University)
  • 황준호 (제주대학교 생명과학기술혁신센터) ;
  • 이미란 (제주대학교 생명과학기술혁신센터) ;
  • 강창희 (제주대학교 생명과학기술혁신센터) ;
  • 부희정 (제주대학교 생명과학기술혁신센터)
  • Received : 2015.11.25
  • Accepted : 2015.12.15
  • Published : 2015.12.31

Abstract

Cynanchi wilfordii Radix roots have been utilized as traditional medicine for variety of diseases including diabetes mellitus, aging progression and scavenging free radicals, enhancing immunity, reducing high serum cholesterol, and anti-tumor activity. However, the mechanisms underlying this effect remain poorly understood. The principal objective of this study was to determine the effect of cynandione A on osteoclast cells. Thus, we was isolated cynandione A from Cynanchi wilfordii Radix roots and evaluated the effect of cynandione A on receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. We found that cynandione A significantly inhibited osteoclast differentiation stimulated-RANKL in RAW 264.7 cells. Cynandione A conspicuously inhibited the mRNA and protein expression of matrix metallopeptidase 9 (MMP-9), tartrate-resistant acid phosphatase (TRAP) in cynandione A treated with RANKL. Taken together, our results demonstrated that Cynanchi Wilfordii Radix may be useful treatment option of bone-related disease such as osteoporosis leads to fracture of bone and rheumatoid arthritis.

Keywords

References

  1. Canalis, E., McCarthy, T. and Centrella, M. (1988) Growth factors and the regulation of bone remodeling. J. Clin. Invest. 81: 277-281. https://doi.org/10.1172/JCI113318
  2. Raisz, L. G. (1988) Hormonal regulation of bone growth and remodeling. Ciba Found. Sympo. 136: 226-238.
  3. Takahashi, N., Udagawa, N. and Suda, T. (1999) A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun. 256: 449-455. https://doi.org/10.1006/bbrc.1999.0252
  4. Ducy, P., Schinke, T. and Karsenty, G. (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289: 1501-1504. https://doi.org/10.1126/science.289.5484.1501
  5. Hughes, D. E., Wright, K. R., Uy, H. L., Sasaki, A., Yoneda, T., Roodman, D. G., Mundy, G. R. and Boyce, B. F. (1995) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J. Bone Miner. Res. 10: 1478-1487.
  6. Choi, H. S., Zhu M., Kim C. S., Lee, J. H. (2003) Stydies of name and herbal origins of Ha-Soo-Oh. Korean Journal of Oriental Medicine 9: 81-89.
  7. Han, K. S., Shin, G. J., Lee, W. C., Lee, J. H. (1998) Study on the Antioxidative Effects and Amino Acid Contents of the Roots of Cynanchum Wilfordii. Korean J. Orient. Int. Med. 19: 411-430.
  8. Shan, L., Liu, R., Shen, Y., Zhang, W., Zhang, C., Wu, D., Min, L., Su, J. and Xu, X. (2006) Gastroprotective effect of a traditional Chinese herbal drug "Baishouwu" on experimental gastric lesions in rats. J. Ethnopharmacol. 107: 389-394. https://doi.org/10.1016/j.jep.2006.03.022
  9. Kim, M. S., Baek, J. H., Park, J., Hwang, B. Y., Kim, S. E., Lee, J. J. and Kim, K. (2005) Wilfoside K1N isolated from Cynanchum wilfordii inhibits angiogenesis and tumor cell invasion. Int. J. Oncol. 26: 1533-1539.
  10. Hwang, B. Y., Kim, Y. H., Ro, J. S., Lee, K. S. and Lee, J. J. (1999) Acetophenones from the roots of Cynanchum wilfordii HEMSLEY. Arch. Pharm. Res. 22: 72-74. https://doi.org/10.1007/BF02976439
  11. Yeo, H. and Kim, J. (1997) A benzoquinone from Cynanchum wilfordii. Phytochemistry 46: 1103-1105. https://doi.org/10.1016/S0031-9422(97)00403-2
  12. Kim, S. H., Lee, T. H., Lee, S. M., Park, J. H., Park, K. H., Jung, M., Jung, H., Mohamed, M. A., Baek, N. I., Chung, I. S. and Kim, J. (2015) Cynandione A attenuates lipopolysaccharide-induced production of inflammatory mediators via MAPK inhibition and NF-kappaB inactivation in RAW264.7 macrophages and protects mice against endotoxin shock. Exp. Biol. Med. (Maywood) 240: 946-954. https://doi.org/10.1177/1535370214558022
  13. Amano, F. and Noda, T. (1995) Improved detection of nitric oxide radical (NO${\bullet}$) production in an activated macrophage culture with a radical scavenger, carboxy PTIO, and Griess reagent. FEBS Lett. 368: 425-428. https://doi.org/10.1016/0014-5793(95)00700-J
  14. Kim, Y., Shin, Y., Lee, K. H. and Kim, T. (2012) Anethum graveloens flower extracts inhibited a lipopolysaccharideinduced inflammatory response by blocking iNOS expression and NF-${\kappa}B$ activity in macrophages. Biosci. Biotechnol. Biochem. 76: 1122-1127. https://doi.org/10.1271/bbb.110950
  15. Hwang, J. H. and Lim, S. B. (2014) Antioxidant and Antiinflammatory Activities of Broccoli Florets in LPS-stimulated RAW 264.7 Cells. Prev. Nutr. Food Sci. 19: 89. https://doi.org/10.3746/pnf.2014.19.2.089
  16. Suda, K., Udagawa, N., Sato, N., Takami, M., Itoh, K., Woo, J. T., Takahashi, N. and Nagai, K. (2004) Suppression of osteoprotegerin expression by prostaglandin E2 is crucially involved in lipopolysaccharide-induced osteoclast formation. J. Immunol. 172: 2504-2510. https://doi.org/10.4049/jimmunol.172.4.2504
  17. Ono, K., Kaneko, H., Choudhary, S., Pilbeam, C. C., Lorenzo, J. A., Akatsu, T., Kugai, N. and Raisz, L. G. (2005) Biphasic effect of prostaglandin E2 on osteoclast formation in spleen cell cultures: role of the EP2 receptor. J. Bone Miner. Res. 20: 23-29. https://doi.org/10.1359/jbmr.2005.20.1.23
  18. Hinz, B., Brune, K. and Pahl, A. (2000) Prostaglandin E2 upregulates cyclooxygenase-2 expression in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 272: 744-748. https://doi.org/10.1006/bbrc.2000.2859
  19. Kaneko, H., Mehrotra, M., Alander, C., Lerner, U., Pilbeam, C. and Raisz, L. (2007) Effects of prostaglandin E2 and lipopolysaccharide on osteoclastogenesis in RAW 264.7 cells. Prostaglandins Leukot. Essent. Fatty Acids 77: 181-186. https://doi.org/10.1016/j.plefa.2007.09.002
  20. Higuchi, M., Higashi, N., Taki, H. and Osawa, T. (1990) Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and L-arginine-dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J. Immunol. 144: 1425-1431.
  21. Guzik, T., Korbut, R. and Adamek-Guzik, T. (2003) Nitric oxide and superoxide in inflammation. J. Physiol. Pharmacol. 54: 469-487.
  22. Yang, S. B., Lee, S. M., Park, J., Lee, T. H., Baek, N., Park, H., Lee, H. and Kim, J. (2014) Cynandione A from Cynanchum wilfordii attenuates the production of inflammatory mediators in LPS-induced BV-2 microglial cells via NF-${\kappa}B$ inactivation. Biol. Pharm. Bull. 37: 1390-1396. https://doi.org/10.1248/bpb.b13-00939
  23. Mundy, G. and Roodman, G. (1987) Osteoclast ontogeny and function. J. Bone Miner. Res. 5: 209-279.
  24. Janckila, A. J., Li, C. Y., Lam, K. W. and Yam, L. T. (1978) The cytochemistry of tartrate-resistant acid phosphatase. Technical considerations. Am. J. Clin. Pathol. 70: 45-55. https://doi.org/10.1093/ajcp/70.1.45
  25. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M. T. and Martin, T. J. (1999) Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20: 345-357. https://doi.org/10.1210/edrv.20.3.0367
  26. Ahn, Y. H., Oh, J. M., Lee M. S., Jung, J. H., Chae, S. U., Moon, S. Y., Jeon, B. H. and Choi, M. K. (2012) Effect of Water Extract of Cynanchi Wilfordii Radix in RANK-Linduced Osteoclast Differentiation. Korean J. Orient. Physiol. Pathol. 26: 160-165.
  27. Fang, H., Yue, R., Ga, Y., Zhang, Y., Shan, L. and Zhao, J. (2015) Analysis of Cynandione A's Anti-Ischemic Stroke Effects from Pathways and Protein-Protein Interactome. PLoS One 10: e0124632. https://doi.org/10.1371/journal.pone.0124632
  28. Choi, G. C., Jiang, Y., Roh, E., Kim, Y., Xu G. H., Na M. K. and Lee S. H. (2010) Constituents of Cynanchum auriculatum and their inhibitory effect on melanogenesis in B16 mouse melanoma cell lines. Kor. J. Pharmacogn. 41: 238-244.