DOI QR코드

DOI QR Code

Life Cycles of Sweltsa Species (Plecoptera: Chloroperlidae) in a Small Mountain Stream

산간 소하천에 서식하는 녹색강도래의 생활환

  • Chung, Keun (Applied Biology Program, Division of Bioresources Sciences, College of Agriculture and Life Sciences, Kangwon National University)
  • 정근 (강원대학교 농업생명과학대학 생물자원과학부 응용생물학전공)
  • Received : 2015.11.13
  • Accepted : 2015.12.24
  • Published : 2015.12.31

Abstract

Life cycles of Sweltsa illiesi and S. lepnevae were determined from a headwater stream in Mt. Jumbong. Identification of nymphs was done by using DNA barcoding. Nymphs begin to have species specific color pattern on their head several months prior to adult emergence and differ in the form of the third antennal segment. Two species appear to have similar semivoltine life cycles in this stream, beginning to hatch from June and finishing adult emergence about 701 days later. The combined annual mean biomass in ash free dry mass (AFDM) was estimated as $96mg\;AFDM\;m^{-2}$. The combined annual secondary production were 373 mg and $297mg\;AFDM\;m^{-2}\;yr^{-1}$, calculated by using size frequency method and increment summation method respectively.

점봉산의 한 소하천에 서식하는 녹색강도래 Sweltsa illiesi와 S. lepnevae의 생활환이 추정되었다. 약충은 DNA barcode로 동정되었다. 이들의 약충은 성충으로 우화하기 몇 달 전부터 머리에 종 특이적 무늬가 나타났으며, 더듬이 셋째 마디의 모양이 서로 달랐다. 두 종은 거의 동일한 semivoltine 생활환을 가지며, 산란된 알은 6월에 부화하여 약 701일의 생육기간을 보내는 것으로 나타났다. 두 종의 통합된 연평균 생물량은 회분외질량 (AFDM)으로 $96mg\;AFDM\;m^{-2}$으로 추정되었다. 통합 2차생산력은 size frequency법으로는 373 mg, increment summation법으로는 $297mg\;AFDM\;m^{-2}\;yr^{-1}$인 것으로 추정되었다.

Keywords

References

  1. Benke, A.C. and A.D. Huryn. 2007. Chapter 29. Secondary production of macroinvertebrates, p. 691-710. In: Methods in stream ecology (Hauer, F.R. and G.A. Lamberti, eds.). Academic Press, Burlington.
  2. Chung, K. 2005a. Abundance and biomass of macroinvertebrate association in a first order stream at Mt. Jumbong, Kangwon-do. Korean Journal of Limnology 38: 1-10.
  3. Chung, K. 2005b. The life cycle and secondary production of Cinticostella levanidovae (Tshernova) collected from a headwater stream in Mt. Jumbong, Korea. Journal of Asia-Pacific Entomology 8: 367-374. https://doi.org/10.1016/S1226-8615(08)60259-9
  4. Chung, K. 2008. Body length-mass relationships of aquatic insect of mountain streams in central Korean peninsula. Korean Journal of Limnology 41: 320-330. (in Korean)
  5. Elias, E., R.I. Hill, K.R. Willmott, K.K. Dasmahapatra, A.V. Z. Brower, J. Mallet and C.D. Jiggins. 2007. Limited performance of DNA barcoding in a diverse community of tropical butterflies. Proceedings of Royal Society of London B 274: 2881-2889. https://doi.org/10.1098/rspb.2007.1035
  6. Folmer, O., M. Black, W. Hoeh, R. Lutz and R. Vrijenhoek. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294-299.
  7. Gill, B.A., R.A. Harrington, B.C. Kondratieff, K.R. Zamudio, N.L. Poff and W.C. Funk. 2014. Morphological taxonomy, DNA barcoding, and species diversity in southern Rocky Mountain headwater streams. Freshwater Science 33: 288-301. https://doi.org/10.1086/674526
  8. Hebert, P.D.N., A. Cywinska, S.L. Ball and J.R. deWaard. 2003. Biological identifications through DNA barcodes. Proceedings of Royal Society of London B 270: 313-321. https://doi.org/10.1098/rspb.2002.2218
  9. Hebert, P.D.N., E.H. Penton, J.M. Burns, D.H. Janzen and W. Hallwachs. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America 101: 14812-14817. https://doi.org/10.1073/pnas.0406166101
  10. Ivanova, N.V., J. deWaard and P.D.N. Hebert. (2006) Protocols. Glass fiber plate DNA extraction. http://ccdb.ca
  11. Jackson, J.K., J.M. Battle, B.P. White, E.M. Pilgrim, E.D. Stein, P.E. Miller and B.W. Sweeney. 2014. Cryptic biodiversity in streams: a comparison of macroinvertebrate communities based on morphological and DNA barcode identifications. Freshwater Science 33: 312-324. https://doi.org/10.1086/675225
  12. Meyer, C.P. 2003 Molecular systematics of cowries (Gastropoda: Cypraeidae) and diversification patterns in the tropics. Biological Journal of the Linnean Society 79: 401-459. doi: 10.1046/j.1095-8312.2003.00197.x.
  13. Shelley, L.B., P.D.N. Hebert, S.K. Burian and J.M. Webb. 2005. Biological identifications of mayflies (Ephemeroptera) using DNA barcodes. Journal of North American Benthological Society 24: 508-524. https://doi.org/10.1899/04-142.1
  14. Sievers, F., A. Wilm, D.G. Dineen, T.J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Soding, J.D. Thompson and D. Higgins. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7: 539. DOI 10.1038/msb.2011.75.
  15. Tamura, K., G. Stecher, D. Peterson, A. Filiski and S. Kumar. 2013. Mega6: Molecular evolutionary genetics analysis version. 6.0. Molecular Biology and Evolution 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
  16. Wang, Z. and T.G. Rossman. 1994. Isolation of DNA fragments from agarose gel by centrifugation. Nucleic Acids Research 22: 2862-2863. https://doi.org/10.1093/nar/22.14.2862
  17. Waters, T.F. 1969. Subsampling for dividing large samples of stream invertebrate drift. Limnology and Oceanography 14: 813-815. https://doi.org/10.4319/lo.1969.14.5.0813