DOI QR코드

DOI QR Code

Ethylene Glycol, 1,4-Cyclohexane Dimethanol, Isosorbide와 Terephthalic Acid로 제조되는 바이오기반 삼원공중합체의 미세구조 및 열적 특성

Microstructure and Thermal Characteristics of Bio-based Terpolymer Made from Terephthalic Acid with Ethylene Glycol, 1,4-Cyclohexane Dimethanol, and Isosorbide

  • 투고 : 2014.07.09
  • 심사 : 2014.09.14
  • 발행 : 2015.03.25

초록

다양한 함량의 테레프탈산, 에틸렌글리콜, 1,4-싸이클로헥산 디메탄올, 이소소바이드로 구성된 일련의 바이오 기반 삼원 공중합체들의 특성을 $^1H$ NMR과 $^{13}C$ NMR을 이용하여 연구하였다. NMR 분석 결과 모두 랜덤한 미세 구조를 가졌고 시퀀스 분포는 이소소바이드의 함량에 따라 영향을 받았다. 시차주사열량계(DSC) 데이터로부터 유리전이온도는 주로 이소소바이드 함량이 증가함에 따라 증가하는 것을 알 수 있었다. 또한 확장된 Fox 식을 이용하여 각 성분의 함량에 따른 삼원공중합체의 유리전이 온도를 예측하고자 하였다.

Characterization of a series of bio-based terpolymers containing various amounts of ethylene glycol, 1,4-cyclohexylene dimethanol, and isosorbide units were studied by $^1H$ NMR and $^{13}C$ NMR. The NMR results revealed that they had all random microstructures and that their sequence distribution was affected by the content of isosorbide. From DSC data for the terpolymer series investigated, it was observed that the glass transition temperature increased mainly as the content of isosorbide increased. The glass transition temperatures of terpolymers were estimated from the composition by extended Fox equation.

키워드

과제정보

연구 과제 주관 기관 : 단국대학교

참고문헌

  1. C. Japu, A. M. de Ilarduya, A. Alla, and S. Munoz-Guerra, Polymer, 55, 2294 (2014). https://doi.org/10.1016/j.polymer.2014.03.018
  2. N. Guo, D. Hu, H. Wang, R. Wang, and Y. Xiong, Polym. Bull., 70, 3031 (2013). https://doi.org/10.1007/s00289-013-1005-1
  3. G. Moad, A. Groth, M. S. O'Shea, J. Rosalie, R. D. Trozer, and G. Peeters, Macromol. Symp., 202, 37 (2003).
  4. T.-M. Wu, C.-C. Chang, and T. L. Yu, Polym. Phys., 19, 2515 (2000).
  5. R. T. Neill and D. S. McWilliams, U.S. Patent 20140010982 A1 (2004).
  6. S. R. Turner, R. W. Seymour, and J. R. Dombroski, Modern Polyesters: Chemistry and Technology of Polyesters and Copolyester, J. Scheirs and T. E. Long, Editors, John Wiley & Sons, Ltd., Chapter 7 (2003).
  7. D. R. Kelsey, B. M. Scardino, J. S. Grebowicz, and H. H. Chuah, Macromolecules, 33, 5810 (2000). https://doi.org/10.1021/ma000223+
  8. C. J. Brandenburg and R. A. Hayes, U.S. Patent 2003020429 (2003).
  9. R. Quintana, A. M. de Ilarduya, A. Alla, and S. Munoz-Guerra, J. Polym. Sci., Part A: Polym. Chem., 49, 2252 (2011). https://doi.org/10.1002/pola.24657
  10. H. Shirali, M. Rafizadeh, and F. A. Taromi, J. Compos. Mater., 48, 301 (2014). https://doi.org/10.1177/0021998312471566
  11. N. Gonzalez-Vidal, A. M. de Ilarduya, and S. Munoz-Guerra, J. Polym. Sci., Part A: Polym. Chem., 47, 5954 (2009). https://doi.org/10.1002/pola.23639
  12. W. J. Yoon, S. Y. Hwang, J. M. Koo, Y. J. Lee, S. U. Lee, and S. S. Im, Macromolecules, 46, 7219 (2013). https://doi.org/10.1021/ma4015092
  13. W. J. Yoon, K. S. Oh, J. M. Koo, J. R. Kim, K. J. Lee, S. U. Lee, and S. S. Im, Macromolecules, 46, 2930 (2013). https://doi.org/10.1021/ma4001435
  14. W. S. Trahanovsky and Y. Wang, Fuel. Chem. Div. Prep., 47, 368 (2002).
  15. Y. Zhu, M. Durand, V. Molinier, and J.-M. Aubry, Green Chem., 10, 532 (2008). https://doi.org/10.1039/b717203f
  16. R. Quintana, A. M. de Ilarduya, A. Alla, and S. M. Guerra, High Perform. Polym., 24, 24 (2012). https://doi.org/10.1177/0954008311429504
  17. A. M. Aerdts, K. L. L. Ersels, and G. Groeninckx, Macromolecules, 29, 1041 (1996). https://doi.org/10.1021/ma9507857
  18. J. Thiem and H. Lueders, Starch/Staerke, 36, 170 (1984). https://doi.org/10.1002/star.19840360506
  19. J. Thiem and H. Lueders, Polym. Bull., 11, 365 (1984).
  20. D. Braun and M. Bergmann, J. Fur Praktische Chemie-chemikerzeitung, 334, 298 (1992). https://doi.org/10.1002/prac.19923340403
  21. R. Storbeck, M. Rehahn, and M. Ballauff, Makromol. Chem., 194, 53 (1993). https://doi.org/10.1002/macp.1993.021940104
  22. H. R. Kricheldorf, G. Behnken, and M. Sell, J. Macromol. Sci., Part A: Pure Appl. Chem., 44, 679 (2007). https://doi.org/10.1080/10601320701351128

피인용 문헌

  1. Polymerization Kinetics and Physical Properties of Polyurethanes Synthesized by Bio-Based Monomers vol.27, pp.2, 2015, https://doi.org/10.1007/s13233-019-7029-0