DOI QR코드

DOI QR Code

Isothermal Crystallization Kinetics of Quaternary Ammonium Group Grafted Polypropylene

제4암모늄기의 곁가지를 가지는 폴리프로필렌에서 등온결정화속도

  • Liu, Guangtian (Hebei Key Laboratory of Applied Chemistry, Yanshan University)
  • Received : 2014.06.23
  • Accepted : 2014.08.29
  • Published : 2015.03.25

Abstract

In this paper, the isothermal crystallization kinetics of a functional PP (FPP) with different grafting yields (GY)-methacryloxyethyltrimethyl ammonium chloride (DMC) grafted PP were investigated by differential scanning calorimetry (DSC). The results showed that the crystallization rate of FPP (GY=4.83%) was the highest for all of the studied samples. Furthermore, for the FPP with different GY, the value of $t_{1/2}$ became longer with increasing the grafting yield (GY). The possible explanation was that the quaternary ammonium groups introduced affected the crystallization process of the FPP in two opposite directions, i.e. promoting the nucleation and hindering the transport of the chain molecules towards the growing nuclei. Polarized optical micrographs showed that the DMC chains acted as nucleating agents, which accelerated the nucleation. In addition, the results showed the FPP had lower nucleation free energy than the PP. This study would be useful for designing the processing parameters of the grafted samples.

Keywords

References

  1. P. Ning, Z. O. Chen, and L. Ren, J. South China Univ. Techno. (Nat. Sci. Ed.), 29, 77 (2001).
  2. K. Miyauchi and S. Kyoichi, Polymer, 52, 3519 (2011). https://doi.org/10.1016/j.polymer.2011.05.050
  3. T. H. Kim and H. S. Na, Polymer(Korea), 37, 753 (2013).
  4. C. G. Angel, A. L. Carmen, T. Cristina, C. Angel, and B. Emilio, Acta Biomater., 7, 996 (2011). https://doi.org/10.1016/j.actbio.2010.10.001
  5. H. Ji, S. Jung, H. Hur, H. S. Choi, J. H. Kim, and H. O. Park, Polymer(Korea), 36, 245 (2012).
  6. H. Ji, X. Liu, H. S. Choi, J. H. Kim, and H. O. Park, Polymer(Korea), 34, 294 (2010).
  7. S. P. Lonkar, S. M. Therias, N. Aperaa, F. Eroux, J. L. Ardette, and R. P. Singh, Polymer, 50, 1505 (2009). https://doi.org/10.1016/j.polymer.2009.01.031
  8. P. Svoboda, D. Svobodova, P. Slobodian, T. Ougizawa, T. Inoue, J. Wang, and Q. Dou, Polym. Test., 28, 215 (2009). https://doi.org/10.1016/j.polymertesting.2008.12.007
  9. P. Svoboda, K. Trivedi, D. Svobodova, P. Mokrejs, V. Vasek, K. Mori, T. Ougizawa, and T. Inoue, Mater. Chem. Phys., 131, 84 (2011). https://doi.org/10.1016/j.matchemphys.2011.07.058
  10. K. H. Yoon, D. Y. Shin, and Y. C. Kim, Polymer(Korea), 34, 294 (2010).
  11. W. Zhen and J. Sun, Polymer(Korea), 37, 663 (2013).
  12. G. T. Liu and M. S. Zhao, Iran Polym. J., 18, 581 (2009).
  13. J. Varga, "Crystallization, Melting and Supermolecular Structure of Isotactic Polypropylene", in Polypropylene: Structure, Blends and Composites, J. K. Kocsis, Editor, Chapman and Hall, London, Chap. 3, p 56 (1995).
  14. A. Galeski, "Nucleation of Polypropylene", in Polypropylene: Structure, Blends and Composites, J. K. Kocsis, Editor, Chapman and Hall, London, Chap. 4, p 116 (1995).
  15. M. Avrami, J. Chem. Phys., 7, 1103 (1939). https://doi.org/10.1063/1.1750380
  16. M. Avrami, J. Chem. Phys., 9, 117 (1941).
  17. J. J. Janimak, S. Z. D. Cheng, A. Q. Zhang, and E. T. Hsieh, Polymer, 33, 728 (1992). https://doi.org/10.1016/0032-3861(92)90329-U
  18. J. Yu and J. He, Polymer, 41, 891 (2000). https://doi.org/10.1016/S0032-3861(99)00271-2
  19. Y. Zhang, X. L. Jiang, Y. Guan, and A. N. Zheng, Mater. Lett., 59, 3626 (2005). https://doi.org/10.1016/j.matlet.2005.07.010