DOI QR코드

DOI QR Code

Preparation and Characterization of Inclusion Complex between β-Cyclodextrin and Polylactic Acid

β-Cyclodextrin과 Polylactic Acid간의 포접화합물 제조 및 특성 분석

  • Nan, Song Ya (Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, Xinjiang University) ;
  • Fang, Zhou Yu (Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, Xinjiang University) ;
  • Jun, Zhen Wei (Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, Xinjiang University)
  • Received : 2014.06.17
  • Accepted : 2014.08.07
  • Published : 2015.03.25

Abstract

The inclusion complexes (ICs) between polylactic acid (PLA) and ${\beta}$-cyclodextrin (CD) were prepared by co-precipitation method in this work. The orthogonal experiments were designed to investigate the influence of different factors on the formation of inclusion complexes. The results suggested that the optimum scheme of inclusion compounds could be obtained when the feeding ratio of CD to PLA (wt%) was 20:1, stirring speed was 6 kr/min and the stirring time was 30 min. The structures and properties of the inclusion complexes were characterized by $^1H$ NMR, FTIR, DSC, FT-Raman, XRD and TGA. The DSC results demonstrated that the crystallization behavior of the inclusion complexes nearly disappeared. It was found that ${\beta}$-CD-PLA inclusion complex had a better thermal stability compared with the neat PLA. The model of the inclusion complexes was proposed on the basis of XRD, $^1H$ NMR and DSC results.

Keywords

Acknowledgement

Supported by : National Science Foundation of China

References

  1. J. H. Jung, S. S. Lee, and T. Kaneda, Korea Polym. J., 7, 377 (1999).
  2. X. T. Shuai, M. Wei, F. E. Porbeni, T. A. Bullions, and A. E. Tonelli, Biomacromolecules, 3, 201 (2002). https://doi.org/10.1021/bm015609m
  3. F. E. Porbeni, E. M. Edeki, I. D. Shin, and A. E. Tonelli, Polymer, 42, 6907 (2001). https://doi.org/10.1016/S0032-3861(01)00181-1
  4. R. Vogel, B. Tandler, L. Haussler, D. Jehnichen, and H. Brunig, Macromol. Biosci., 6, 730 (2006). https://doi.org/10.1002/mabi.200600116
  5. K. M. Huh, T. Ooya, W. K. Lee, S. Sasaki, I. C. Kwon, S. Y. Jeong, and N. Yui, Macromolecules, 34, 8657 (2001). https://doi.org/10.1021/ma0106649
  6. S. Zhang, Z. J. Yu, T. Govender, H. Y. Luo, and B. J. Li, Polymer, 49, 3205 (2008). https://doi.org/10.1016/j.polymer.2008.05.030
  7. R. Auzely-Velty, Comptes Rendus Chimie, 14, 167 (2011). https://doi.org/10.1016/j.crci.2010.04.019
  8. A. Harada and M. Kamachi, Macromolecules, 23, 2821 (1990). https://doi.org/10.1021/ma00212a039
  9. S. S. Tallury, M. B. Smyth, E. Cakmak, and M. A. Pasquinelli, J. Phys. Chem., 116, 2023 (2012). https://doi.org/10.1021/jp206745q
  10. S. A. Sajadi Tabassi, E. Khodaverdi, and F. Hadizadeh, Res. Pharm. Sci., 7, 975 (2012).
  11. M. A. Semsarzadeh and S. Amiri, Silicon, 4, 151 (2012). https://doi.org/10.1007/s12633-012-9116-0
  12. J. R. Lee, S. W. Chun, and H. J. Kang, Polymer(Korea), 27, 285 (2003).
  13. S. H. Lee, D. Kim, J. H. Kim, D. H. Lee, S. J. Sim, J. D. Nam, H. Kye, and Y. Lee, Polymer(Korea), 28, 519 (2004).
  14. J. K. Jang, B. Lee, C. W. Han, M. S. Kim, S. H. Cho, H. B. Lee, and G. Khang, Polymer(Korea), 28, 382 (2004).
  15. L. H. He, J. Huang, Y. M. Chen, X. J. Xu, and L. P. Liu, Macromolecules, 38, 3845 (2002).
  16. T. Dong, Y. He, B. Zhu, K. M. Shin, and Y. Inoue, Macromolecules, 38, 7736 (2005). https://doi.org/10.1021/ma050826r
  17. J. Li, B. Chen, X. Wang, and S. H. Goh, Polymer, 45, 1777 (2004). https://doi.org/10.1016/j.polymer.2004.01.021
  18. T. Oliveira, G. Botelho, N. M. Alves, and J. F. Mano, Colloid Polym. Sci., 292, 863 (2014). https://doi.org/10.1007/s00396-013-3127-2
  19. R. Zhang, Y. M. Wang, K. J. Wang, G. Q. Zheng, Q. Li, and C. Y. Shen, Polym. Bull., 70, 195 (2013). https://doi.org/10.1007/s00289-012-0814-y
  20. J. L. Espartero, I. Rashkov, S. M. Li, N. Manolova, and M. Vert, Macromolecules, 29, 3535 (1996). https://doi.org/10.1021/ma950529u
  21. J. M. Zhang, Y. X. Duan, H. Sato, H. Tsuji, I. Noda, S. Yan, and Y. Ozaki, Macromolecules, 38, 8012 (2005). https://doi.org/10.1021/ma051232r
  22. T. Furukawa, H. Sato, R. Murakami, J. M. Zhang, Y. X. Duan, I. Noda, S. Ochiai, and Y. Ozaki, Macromolecules, 38, 6445 (2005). https://doi.org/10.1021/ma0504668
  23. A. V. Janorkar, A. T. Metters, and D. E. Hirt, Macromolecules, 37, 9151 (2004). https://doi.org/10.1021/ma049056u
  24. R. S. Hirlekar, S. N. Sonawane, and V. J. Kadam, AAPS. Pharm. Sci. Tech., 10, 858 (2009). https://doi.org/10.1208/s12249-009-9274-6
  25. T. Dong, Y. He, K. M. Shin, and Y. Inoue, Macromol. Biosci., 4, 1084 (2004). https://doi.org/10.1002/mabi.200400054
  26. L. Huang, E. Allen, and A. E. Tonelli, Polymer, 39, 4857 (1998). https://doi.org/10.1016/S0032-3861(97)00568-5
  27. Y. Inoue, Annual Reports on NMR Spectroscopy, 27, 59 (1993). https://doi.org/10.1016/S0066-4103(08)60265-3
  28. H. Jiao, S. H. Goh, and S. Valiyaveetil, Macromolecules, 34, 8138 (2001). https://doi.org/10.1021/ma0110507
  29. A. Harada, M. Okada, J. Li, and M. Kamachi, Macromolecules, 28, 8406 (1995). https://doi.org/10.1021/ma00128a060
  30. D. R. Qin and R. T. Kean, Appl. Spectrosc., 52, 488 (1998). https://doi.org/10.1366/0003702981943950
  31. G. Kister, G. Cassanas, and M. Vert, Polymer, 39, 267 (1998). https://doi.org/10.1016/S0032-3861(97)00229-2
  32. G. M. Do Nascimento, J. E. P. Da Silva, S. I. C. De Torresi, and P. S. Santos, Mol. Cryst. Liq. Cryst., 374, 53 (2002). https://doi.org/10.1080/10587250210439
  33. F. Kayaci, O. C. O. Umu, T. Tekinay, and T. Uyar, J. Agr. Food Chem., 61, 3901 (2013). https://doi.org/10.1021/jf400440b
  34. D. M. Xie, K. S. Yang, and W. X. Sun, Curr. Appl. Phys., 7, 15 (2007). https://doi.org/10.1016/j.cap.2006.11.006
  35. A. Harada, M. Okada, J. Li, and M. Kamachi, Macromolecules, 28, 8406 (1995). https://doi.org/10.1021/ma00128a060
  36. J. Y. Li and D. Y. Yan, Macromolecules, 34, 1542 (2001). https://doi.org/10.1021/ma001752g
  37. H. Okumura, Y. Kawaguchi, and A. Harada, Macromolecules, 34, 6338 (2001). https://doi.org/10.1021/ma010516i
  38. L. Huang, E. Allen, and A. E. Tonelli, Polymer, 40, 3211 (1999). https://doi.org/10.1016/S0032-3861(98)00529-1
  39. T. Michishita, Y. Takashima, and A. Harada, Macromol. Rapid Commun., 25, 1159 (2004). https://doi.org/10.1002/marc.200400108
  40. J. C. Huang, X. Li, T. T. Lin, C. B. He, K. Y. Mya, Y. Xiao, and J. Li, J. Polym. Sci., Part B: Polym. Phys., 42, 1173 (2004). https://doi.org/10.1002/polb.10785
  41. H. Jiao, S. H. Goh, and S. Valiyaveettil, Macromolecules, 35, 1399 (2002). https://doi.org/10.1021/ma011566q
  42. M. Ohmura, Y. Kawahara, K. Okude, Y. Hasegawa, M. Hayashida, R. Kurioto, and A. Kawaguchi, Polymer, 45, 6967 (2004). https://doi.org/10.1016/j.polymer.2004.07.063
  43. E. I. Popova, I. N. Topchieva, E. V. Zhavoronkova, I. G. Panava, E. V. Matukhina, and V. I. Gerasimov, Polym. Sci. Series A: Chem. Phys., 44, 72 (2002).

Cited by

  1. Polycaprolactone/Amino-β-Cyclodextrin Inclusion Complex Prepared by an Electrospinning Technique vol.8, pp.11, 2016, https://doi.org/10.3390/polym8110395
  2. Structure and properties of poly(lactic acid)/poly(lactic acid)-α-cyclodextrin inclusion compound composites vol.37, pp.9, 2015, https://doi.org/10.1515/polyeng-2016-0088
  3. Structure and properties of poly(lactic acid)/poly(lactic acid)-α-cyclodextrin inclusion compound composites vol.37, pp.9, 2015, https://doi.org/10.1515/polyeng-2016-0088