DOI QR코드

DOI QR Code

석회석 혼합 시멘트로 제조된 콘크리트의 기초 물성

Material Properties of Concrete Produced with Limestone Blended Cement

  • 투고 : 2014.10.28
  • 심사 : 2014.12.15
  • 발행 : 2015.03.30

초록

본 연구에서는 석회석 미분말을 이용하여 제조한 콘크리트의 굳지 않은 및 굳은 특성을 실험적으로 평가하였다. 석회석 시멘트 제조시 석회석 혼입률은 10%, 15%, 25% 및 35% 범위이며, 보통 포틀랜드 시멘트를 이용하여 제조한 기준 콘크리트 (OPC)와 비교하였다. 혼입률 35%까지 슬럼프, 공기량의 굳지 않은 특성은 기준 시험체와 유사한 특성을 나타내었지만 혼입률이 증가할수록 응결시간은 지연되었다. 석회석 혼입률 15%까지는 압축 및 휨강도, 급속 동결융해 저항성능의 경우 기준 OPC 콘크리트와 동등수준을 확보할 수 있는 것으로 나타났지만, 탄산화 저항성능 향상을 위한 보완은 필요한 것으로 나타났다. 혼입률 25%, 35% 배합은 기준 콘크리트 성능에 비해 압축강도 및 휨강도의 저하가 발생되었다. 치환률이 증가할수록 제한된 수산화칼슘량으로 인해 탄산화 저항성능은 모든 배합에서 감소하였다. 강도감소 및 탄산화저항성능을 고려할 경우, 15% 수준의 석회석 미분말 치환은 가능할 것으로 판단된다.

This paper presents an experimental investigation in order to evaluate fresh and hardened properties of LP (Limestone Powder) blended cement concrete. The cement contents of the mixtures are replaced by LP in the range of 10%, 15%, 25%, and 35%, while a control mixture is prepared with only OPC (Ordinary Portland Cement). The fresh concrete properties like slump and air content are similar to those of control mixture up to 35% of replacement ratio of LP, however a delay in setting time is evaluated. The hardened properties including compressive strength, flexural strength, and rapid freezing and thawing resistance shows similar results of control mixture up to 15% of replacement. Relatively lower strength development is evaluated over 25% replacement of LP. For accelerated carbonation test, resistance to carbonation rapidly decreases with increasing LP replacement ratio due to the limited amount of $Ca(OH)_2$. From the study, LP replacement under 15% can be adopted considering reduction of strength and resistance to carbonation.

키워드

참고문헌

  1. Bonavetti, V., Donza, H., Rahhal, V., and Irassar, E. (2000), Influence of initial curing on the properties of concrete containing limestone blended cement, Cement and Concrete Research, 30, 703-708. https://doi.org/10.1016/S0008-8846(00)00217-9
  2. Bonavetti, V., Rahhal, V. (1996), Mortars with limestone filler blended cement, Hormigon, Argentina, 30, 37-48.
  3. De Weerdt, K., Kjellsen, K. O., Sellevold, E., and Justnes, H. (2011), Synergy between fly ash and limestone powder in ternary cements, Cement and Concrete Composites, 33, 30-38. https://doi.org/10.1016/j.cemconcomp.2010.09.006
  4. Dhir, R. K., Limbachiya, M. C., McCarthy, M. J., Chaipanich, A. (2007), Evaluation of Portland limestone cements for use in concrete construction, Materials and Structures, 40(5), 459-473. https://doi.org/10.1617/s11527-006-9143-7
  5. Government of Canada NRC. (2009), Energy consumption benchmark guide, cement clinker production office of energy efficiency.
  6. Heikal, M., El-Didamon, H., and Morsy, M. S. (2000), Limestonefilled pozzolanic cement, Cement and Concrete Research, 30, 1827-1834. https://doi.org/10.1016/S0008-8846(00)00402-6
  7. Jeon, K. N., An, G. H., and Lee, J. S. (2013), Characteristics of Excess Water Dewatered Concrete Using Permeable Liner, Journal of the Korea Concrete Institute, 25(6), 675-682. https://doi.org/10.4334/JKCI.2013.25.6.675
  8. Lee, M. S., Yun, C. H., and Choi, H, K. (1999), Influence of Limestone Powder on the Hydration of slag cement, Proceedings of the Korea Concrete Institute, 85-88.
  9. Lee, S. H., Lim, D. S., Lim, Y. J., Lee, S. J. (2012), Develpoment of Early Compressive Strength in Portland Cement by Lime Stone Powder, Proceedings of the Korea Concrete Institute, 24(1), 197-198.
  10. Lothenbach, B., Le Saout, G., Gallucci, E., and Scrivener, K. (2008), Influence of limestone on the hydration of Portland cements, Cement and Concrete Research, 38, 848-860. https://doi.org/10.1016/j.cemconres.2008.01.002
  11. Oh, B. H., Park, D. G., Park, J. M., and Lee, J. H. (2002), Mechanical and Durable Properties of Concrete Containing Slag and Limestone Powder, Proceedings of the Korea Concrete Institute, 569-574.
  12. Park, S. W., Lee, S. H., Yoo, D. W., Eom, T. H., and Oh, S. W. (2014), Possibility Development of Portland Limestone Cement Producted by Intergrinding, Proceedings of the Korea Concrete Institute, 513-514.
  13. Ramezanianpour, Ali A., Ghiasvand, E., Nickseresht, I., Mahdikhani, M., and Moodi, F. (2009), Influence of various amounts of limestone powder on performance of Portland limestone cement concretes, Cement and Concrete Composites, 31, 715-720. https://doi.org/10.1016/j.cemconcomp.2009.08.003
  14. Sim, J. I., Yang, K. H. (2010), Air Content, Workability and Bleeding Characteristics of Fresh Lightweight Aggregate Concrete, Journal of the Korea Concrete Institute, 22(4), 559-566. https://doi.org/10.4334/JKCI.2010.22.4.559
  15. Tennis, P., Thomas, M. D. A., and Weiss, W. J. (2011), State-of-the-art report on use of limestone in cements at levels of up to 15%, SN3148, Skokie, Illinois, USA Portland Cement Association.
  16. Tsivilisa, S., Tsantilasa, J., Kakalia, G., Chaniotakisb, E., and Sakellariou, A. (2003), The permeability of Portland limestone cement concrete, Cement and Concrete Research, 33, 1465-1471. https://doi.org/10.1016/S0008-8846(03)00092-9
  17. Voglis, N., Kakali, G., Chaniotakis, E., and Tsivilis, S. (2005), Portland-limestone cements. Their properties and hydration compared to those of other composite cements, Cement and Concrete Composites, 27(2), 191-196. https://doi.org/10.1016/j.cemconcomp.2004.02.006