References
- Cantor B, Chang I T H, Knight P, and Vincent A J B (2004) Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213-218.
- Huang P K, Yeh J W, Shun T T, and Chen S K (2004) Multi-principalelement alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 6, 74-78. https://doi.org/10.1002/adem.200300507
- Lin C M and Tsai H L (2011) Evolution of microstructure, hardness, and corrosion properties of high-entropy Al(0.5)CoCrFeNi alloy. Intermetallics 19, 288-294. https://doi.org/10.1016/j.intermet.2010.10.008
- Ren B, Liu Z X, Cai B, Wang M X, and Shi L (2012) Aging behavior of a CuCr2Fe2NiMn high-entropy alloy. Mater. Design 33, 121-126. https://doi.org/10.1016/j.matdes.2011.07.005
- Ren B, Liu Z X, Li D M, Shi L, Cai B, and Wang M X (2010) Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system. J. Alloys Compd. 493, 148-153. https://doi.org/10.1016/j.jallcom.2009.12.183
- Shun T T, Hung C H, and Lee C F (2010) Formation of ordered/disordered nanoparticles in FCC high entropy alloys. J. Alloys Compd. 493, 105-109. https://doi.org/10.1016/j.jallcom.2009.12.071
- Singh S, Wanderka N, Murty B S, Glatzel U, and Banhart J (2011) Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 59, 182-190. https://doi.org/10.1016/j.actamat.2010.09.023
- Tong C J, Chen M R, Chen S K, Yeh J W, Shun T T, Lin S J, and Chang S Y (2005a) Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263-1271. https://doi.org/10.1007/s11661-005-0218-9
- Tong C J, Chen Y L, Chen S K, Yeh J W, Shun T T, Tsau C H, Lin S J, and Chang S Y (2005b) Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881-893. https://doi.org/10.1007/s11661-005-0283-0
- Tung C C, Yeh J W, Shun T T, Chen S K, Huang Y S, and Chen H C (2007) On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater. Lett. 61, 1-5. https://doi.org/10.1016/j.matlet.2006.03.140
- Wang F J and Zhang Y (2008) Effect of Co addition on crystal structure and mechanical properties of Ti0.5CrFeNiAlCo high entropy alloy. Mater. Sci. Eng. A 496, 214-216. https://doi.org/10.1016/j.msea.2008.05.020
- Wang X F, Zhang Y, Qiao Y, and Chen G L (2007) Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 15, 357-362. https://doi.org/10.1016/j.intermet.2006.08.005
- Yang X and Zhang Y (2012) Prediction of high-entropy stabilized solidsolution in multi-component alloys. Mater. Chem. Phys. 132, 233-238. https://doi.org/10.1016/j.matchemphys.2011.11.021
- Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, and Chang S Y (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299-303. https://doi.org/10.1002/adem.200300567
- Yeh J W, Chen Y L, Lin S J, and Chen S K (2007) High-entropy alloys-a new era of exploitation. Mater. Sci. Forum 560, 1-9. https://doi.org/10.4028/www.scientific.net/MSF.560.1
- Zhou Y J, Zhang Y, Wang Y L, and Chen G L (2007) Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90, 181904. https://doi.org/10.1063/1.2734517
- Zhu J M, Fu H M, Zhang H F, Wang A M, Li H, and Hu Z Q (2010) Synthesis and properties of multiprincipal component AlCoCrFeNiSix alloys. Mater. Sci. Eng. A 527, 7210-7214. https://doi.org/10.1016/j.msea.2010.07.049