DOI QR코드

DOI QR Code

Microstructural Evolution in CuCrFeNi, CuCrFeNiMn, and CuCrFeNiMnAl High Entropy Alloys

  • Hyun, Jae Ik (Center for Non-crystalline Materials, Department of Materials Science and Engineering, Yonsei University) ;
  • Kong, Kyeong Ho (Center for Non-crystalline Materials, Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Kang Cheol (Center for Non-crystalline Materials, Department of Materials Science and Engineering, Yonsei University) ;
  • Kim, Won Tae (Department of Optical Engineering, Cheongju University) ;
  • Kim, Do Hyang (Center for Non-crystalline Materials, Department of Materials Science and Engineering, Yonsei University)
  • Received : 2015.03.13
  • Accepted : 2015.03.23
  • Published : 2015.03.30

Abstract

In the present study, microstructural evolution in CuCrFeNi, CuCrFeNiMn, and CuCrFeNiMnAl alloys has been investigated. The as-cast CuCrFeNi alloy consists of a single fcc phase with the lattice parameter of 0.358 nm, while the as-cast CuCrFeNiMn alloy consists of (bcc+fcc1+fcc2) phases with lattice parameters of 0.287 nm, 0.366 nm, and 0.361 nm. The heat treatment of the cast CuCrFeNiMn alloy results in the different type of microstructure depending on the heat treatment temperature. At $900^{\circ}C$ a new thermodynamically stable phase appears instead of the bcc solid solution phase, while at $1,000^{\circ}C$, the heat treated microstructure is almost same as that in the as-cast state. The addition of Al in CuCrFeNiMn alloy changes the constituent phases from (fcc1+fcc2+bcc) to (bcc1+bcc2).

Keywords

References

  1. Cantor B, Chang I T H, Knight P, and Vincent A J B (2004) Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375, 213-218.
  2. Huang P K, Yeh J W, Shun T T, and Chen S K (2004) Multi-principalelement alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 6, 74-78. https://doi.org/10.1002/adem.200300507
  3. Lin C M and Tsai H L (2011) Evolution of microstructure, hardness, and corrosion properties of high-entropy Al(0.5)CoCrFeNi alloy. Intermetallics 19, 288-294. https://doi.org/10.1016/j.intermet.2010.10.008
  4. Ren B, Liu Z X, Cai B, Wang M X, and Shi L (2012) Aging behavior of a CuCr2Fe2NiMn high-entropy alloy. Mater. Design 33, 121-126. https://doi.org/10.1016/j.matdes.2011.07.005
  5. Ren B, Liu Z X, Li D M, Shi L, Cai B, and Wang M X (2010) Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system. J. Alloys Compd. 493, 148-153. https://doi.org/10.1016/j.jallcom.2009.12.183
  6. Shun T T, Hung C H, and Lee C F (2010) Formation of ordered/disordered nanoparticles in FCC high entropy alloys. J. Alloys Compd. 493, 105-109. https://doi.org/10.1016/j.jallcom.2009.12.071
  7. Singh S, Wanderka N, Murty B S, Glatzel U, and Banhart J (2011) Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 59, 182-190. https://doi.org/10.1016/j.actamat.2010.09.023
  8. Tong C J, Chen M R, Chen S K, Yeh J W, Shun T T, Lin S J, and Chang S Y (2005a) Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 1263-1271. https://doi.org/10.1007/s11661-005-0218-9
  9. Tong C J, Chen Y L, Chen S K, Yeh J W, Shun T T, Tsau C H, Lin S J, and Chang S Y (2005b) Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881-893. https://doi.org/10.1007/s11661-005-0283-0
  10. Tung C C, Yeh J W, Shun T T, Chen S K, Huang Y S, and Chen H C (2007) On the elemental effect of AlCoCrCuFeNi high-entropy alloy system. Mater. Lett. 61, 1-5. https://doi.org/10.1016/j.matlet.2006.03.140
  11. Wang F J and Zhang Y (2008) Effect of Co addition on crystal structure and mechanical properties of Ti0.5CrFeNiAlCo high entropy alloy. Mater. Sci. Eng. A 496, 214-216. https://doi.org/10.1016/j.msea.2008.05.020
  12. Wang X F, Zhang Y, Qiao Y, and Chen G L (2007) Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 15, 357-362. https://doi.org/10.1016/j.intermet.2006.08.005
  13. Yang X and Zhang Y (2012) Prediction of high-entropy stabilized solidsolution in multi-component alloys. Mater. Chem. Phys. 132, 233-238. https://doi.org/10.1016/j.matchemphys.2011.11.021
  14. Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, and Chang S Y (2004) Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299-303. https://doi.org/10.1002/adem.200300567
  15. Yeh J W, Chen Y L, Lin S J, and Chen S K (2007) High-entropy alloys-a new era of exploitation. Mater. Sci. Forum 560, 1-9. https://doi.org/10.4028/www.scientific.net/MSF.560.1
  16. Zhou Y J, Zhang Y, Wang Y L, and Chen G L (2007) Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90, 181904. https://doi.org/10.1063/1.2734517
  17. Zhu J M, Fu H M, Zhang H F, Wang A M, Li H, and Hu Z Q (2010) Synthesis and properties of multiprincipal component AlCoCrFeNiSix alloys. Mater. Sci. Eng. A 527, 7210-7214. https://doi.org/10.1016/j.msea.2010.07.049