Acknowledgement
Supported by : UNAM
References
-
J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S.Wagstaff, Jr., Factor-izations of
$ b^n{\pm}1$ , b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers, American Mathematical Society, Providence, RI, 1988. -
R. D. Carmichael, On the numerical factors of the arithmetic forms
${\alpha}^n+{\beta}^n$ , Ann. Math. (2) 15 (1913), no. 1-4, 30-70. https://doi.org/10.2307/1967797 - J. Cilleruelo and F. Luca, Repunit Lehmer numbers, Proc. Edinb. Math. Soc. 54 (2011), no. 1, 55-65. https://doi.org/10.1017/S0013091509000455
- M. T. Damir, B. Faye, F. Luca, and A. Tall, Members of Lucas sequences whose Euler function is a power of 2, Fibonacci Quart. 52 (2014), no. 1, 3-9.
- W. Ljunggren, Some theorems on indeterminate equations of the form xnβ1/xβ1 = yq, Norsk Mat. Tidsskr. 25 (1943), 17-20.
- F. Luca, Problem 10626, American Math. Monthly 104 (1997), 871. https://doi.org/10.2307/2975296
- F. Luca, Equations involving arithmetic functions of Fibonacci and Lucas numbers, Fi-bonacci Quart. 38 (2000), no. 1, 49-55.
- F. Luca, Euler indicators of binary recurrence sequences, Collect. Math. 53 (2002), no. 2, 133-156.
- F. Luca, On the Euler function of repdigits, Czechoslovak Math. J. 58 (2008), no. 1, 51-59. https://doi.org/10.1007/s10587-008-0004-0
-
F. Luca and M. Mignotte,
${\phi}(F_{11})=88$ , Divulg. Mat. 14 (2006), no. 2, 101-106. - F. Luca and P. Stanica, Equations with arithmetic functions of Pell numbers, Bull. Soc. Mat. Roumanie, to appear.
- H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119-134. https://doi.org/10.1112/S0025579300004708
- J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
Cited by
- On the equation Ο(Xm - 1) = Xn - 1 vol.11, pp.05, 2015, https://doi.org/10.1142/S1793042115400187