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ON THE EQUATION φ(5m
− 1) = 5n

− 1

Bernadette Faye, Florian Luca, and Amadou Tall

Abstract. Here, we show that the title equation has no positive integer
solutions (m,n), where φ is the Euler function.

1. Introduction

Let φ(m) be the Euler function of the positive integer m. Problem 10626
from the American Mathematical Monthly [6] asks to find all positive integer
solutions (m,n) of the Diophantine equation

(1) φ(5m − 1) = 5n − 1.

To our knowledge, no solution was ever received to this problem. Here, we
prove the following result.

Theorem 1. Equation (1) has no positive integer solution (m,n).

Results in this spirit appear in [3], [4], [6], [7], [8], [9], [10], [11].

2. The proof of Theorem 1

For the proof, we make explicit the arguments from [9] together with some
specific features which we deduce from the factorizations of 5k − 1 for small
values of k. Write

(2) 5m − 1 = 2αpα1
1 · · · pαr

r .

Thus,

(3) φ(5m − 1) = 2α−1pα1−1
1 (p1 − 1) · · · pαr−1

r (pr − 1).

We achieve the proof of Theorem 1 as a sequence of lemmas. The first one
is known but we give a proof of it for the convenience of the reader.

Lemma 2. In equation (1), m and n are not coprime.
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Proof. Suppose that gcd(m,n) = 1. Assume first that n is odd. Then ord2(5
n−

1) = 2, where for a prime p and a nonzero integer k we write ordp(k) for the
exact exponent of p in the factorization of k. Applying the ord2 function in
both sides of (3) and comparing it with (1), we get

(α− 1) + r ≤ (α− 1) +

r
∑

i=1

ord2(pi − 1) = 2.

If m is even, then α ≥ 3, and the above inequality shows that α = 3, r = 0, so
5m − 1 = 8, false. Thus, m is odd, so α = 2 and r = 1. If α1 ≥ 2, then

pα1−1
1 | gcd(φ(5m − 1), 5m − 1) = gcd(5m − 1, 5n − 1) = 5gcd(m,n) − 1 = 4,

a contradiction. So, α1 = 1, 5m − 1 = 4p1, and

5n − 1 = 2(p1 − 1) =
5m − 1

2
− 2 =

5m − 5

2
,

which is impossible. Thus, n is even and since gcd(m,n) = 1, it follows that m
is odd so α = 2. Furthermore, a previous argument shows that in (2) we have
α1 = · · · = αr = 1. Since m is odd, we have that 5 · (5(m−1)/2)2 ≡ 1 (mod pi),

therefore
(

5
pi

)

= 1 for i = 1, . . . , r. Here,
(

a
p

)

is the Legendre symbol of a

with respect to the odd prime p. Hence, pi ≡ 1, 4 (mod 5). If pi ≡ 1 (mod 5),
it follows that 5 | φ(5m − 1) = 5n − 1, a contradiction. Hence, pi ≡ 4 (mod 5)
for i = 1, . . . , r. Reducing now relation (2) modulo 5, we get

4 ≡ 41+r (mod 5), therefore r ≡ 0 (mod 2).

Reducing now equation

2(p1 − 1) · · · (pr − 1) = φ(5m − 1) = 5n − 1

modulo 5, we get

2 · (3r/2)2 ≡ 4 (mod 5), therefore

(

2

5

)

= 1,

a contradiction. �

Lemma 3. If (m,n) satisfies equation (1), then m is not a multiple of any

number d such that p | 5d − 1 for some prime p ≡ 1 (mod 5).

Proof. This is clear, for if not, then 5 | (p− 1) | φ(5d − 1) | φ(5m − 1) = 5n − 1,
false. �

Since 29423041 is a prime dividing 532 − 1, it follows by Lemma 3 that
ord2(m) ≤ 4. From the Cunnigham project tables [1], we deduced that if
q ≤ 512 is an odd prime, then 5q − 1 has a prime factor p ≡ 1 (mod 5) except
for q ∈ {17, 41, 71, 103, 223, 257}. So, if q | m is odd, then

(4) q ∈ Q := {17, 41, 71, 103, 223, 257}∪ {q > 512}.
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Throughout the rest of the paper, we put

(5) k = m− n.

Note that k ≥ 2 because m and n are not coprime by Lemma 2. The next
lemma gives an upper bound on k.

Lemma 4. The following inequality holds:

(6) log

(

log

(

5ke

3.6

))

< 20
∑

q|m
q>2

log log q

q
.

Proof. Write

m = 2α0

s
∏

i=1

qαi

i , qi odd prime, i = 1, . . . , s.

Recall that α0 ≤ 4. None of the values m = 1, 2, 4, 8, 16 satisfies equation (1)
for some n, so s ≥ 1. Then

(7) 5k <
5m − 1

5n − 1
=

5m − 1

φ(5m − 1)
=

∏

p|5m−1

(

1 +
1

p− 1

)

.

For each prime number p 6= 5, we write ℓp for the order of appearance of p in
the Lucas sequence of general term 5n− 1. That is, ℓp is the order of 5 modulo
p. Clearly, if p | 5m − 1, then ℓp = d for some divisor d of m. Thus, we can
rewrite inequality (7) as

(8) 5k <
∏

d|m

∏

ℓp=d

(

1 +
1

p− 1

)

.

If p | m and ℓp is a power of 2, then ℓp | 16, therefore p | 516 − 1. Hence,

p ∈ P = {2, 3, 13, 17, 313, 11489}.

Thus,

(9)
∏

ℓp|16

(

1 +
1

p− 1

)

≤
∏

p∈P

(

1 +
1

p− 1

)

< 3.5.

Inserting (9) into (8), we get

(10)
5k

3.5
<

∏

d|m
P (d)>2

∏

ℓp=d

(

1 +
1

p− 1

)

,

where for a nonzero integer ℓ we write P (ℓ) for the largest prime factor of ℓ
with the convention that P (±1) = 1. We take logarithms in inequality (10)
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above and use the inequality log(1 + x) < x valid for all real numbers x to get

log

(

5k

3.5

)

<
∑

d|m

P (d)>2

∑

ℓp=d

1

p− 1
.

If ℓp = d, then p ≡ 1 (mod d). If P (d) > 2, then since d | m, we get that every
odd prime factor of d is in Q. In particular, it is at least 17. Thus, p > 34.
Hence,

log

(

5k

3.5

)

<
∑

d|m

P (d)>2

∑

ℓp=d

1

p
+

∑

p≥37

1

p(p− 1)
<

∑

d|m

P (d)>2

∑

ℓp=d

1

p
+ 0.007.

We thus get that

(11) log

(

5k

3.6

)

<
∑

d|m

P (d)>2

Sd,

where

(12) Sd :=
∑

ℓp=d

1

p
.

We need to bound Sd. For this, we first take

Pd = {p : ℓp = d}.

Put ωd := #Pd. Since p ≡ 1 (mod d) for all p ∈ Pd, we have that

(13) (d+ 1)ωd ≤
∏

p∈Pd

p < 5d − 1 < 5d, therefore ωd <
d log 5

log(d+ 1)
.

We use the Brun-Titchmarsh theorem in the version due to Montgomery and
Vaughan [12] which asserts that

(14) π(x; d, 1) <
2x

φ(d) log(x/d)
for all x > d ≥ 2,

where π(x; d, 1) stands for the number of primes p ≤ x with p ≡ 1 (mod d).
Put Qd := {p < 4d : p ≡ 1 (mod d)}. Clearly, Qd ⊂ {d+1, 2d+1, 3d+1} and
since d | m and 3 6∈ Q, it follows that d is not a multiple of 3. In particular,
one of d + 1 and 2d + 1 is a multiple of 3, so that at most one of these two
numbers can be a prime. We now split Sd as follows:

(15) Sd ≤
∑

p<4d
p≡1 (mod d)

1

p
+

∑

4d≤p≤d2

p≡1 (mod d)
ℓp=d

1

p
+

∑

p>d2

ℓp=d

1

p
:= T1 + T2 + T3.
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Clearly,

(16) T1 =
∑

p∈Qd

1

p
.

For S2, we use estimate (14) and Abel’s summation formula to get

T2 ≤
π(x; d, 1)

x

∣

∣

∣

d2

x=4d
+

∫ d2

4d

π(t; d, 1)

t2
dt

≤
2d2

d2φ(d) log d
+

2

φ(d)

∫ d2

4d

dt

t log(t/d)

≤
2

φ(d) log d
+

2

φ(d)
log log(t/d)

∣

∣

∣

d2

t=4d

=
2 log log d

φ(d)
+

2

φ(d)

(

1

log d
− log log 4

)

.

The expression 1/ log d− log log 4 is negative for d ≥ 34, so

(17) T2 <
2 log log d

φ(d)
for all d ≥ 34.

Inequality (17) holds for d = 17 as well, since there

T2 < S17 =
1

409
+

1

466344409
< 0.003 < 0.13 <

2 log log 17

φ(17)
.

Hence, inequality (17) holds for all divisors d of m with P (d) > 2.
As for T3, we have by (13),

(18) T3 <
ωd

d2
<

log 5

d log(d+ 1)
.

Hence, collecting (16), (17) and (18), we get that

(19) Sd <
∑

p∈Qd

1

p
+

2 log log d

φ(d)
+

log 5

d log(d+ 1)
.

We now show that

(20) Sd <
3 log log d

φ(d)
.

Since φ(d) < d and at most one of d+ 1 and 2d+ 1 is prime, we get, via (19),
that

Sd <
1

d+ 1
+

1

3d+ 1
+

2 log log d

φ(d)
+

log 5

d log(d+ 1)

<
1

φ(d)

(

4

3
+ 2 log log d+

log 5

log(d+ 1)

)

.
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So, in order to prove (20), it suffices that

4

3
+

log 5

log(d+ 1)
< 2 log log d, which holds for all d > 200.

The only possible divisors d of m with P (d) > 2 (so, whose odd prime factors
are in Q), and with d ≤ 200 are

(21) R := {17, 34, 41, 68, 71, 82, 103, 136, 142, 164}.

We checked individually that for each of the values of d in R given by (21),
inequality (20) holds.

Now we write d = 2αdd1, where αd ∈ {0, 1, 2, 3, 4} and d1 is odd. Since
d1 ≥ 17 > 2αd , we have that d < d21. Hence, keeping d1 fixed and summing
over αd, we have that

(22)

4
∑

αd=0

S2αdd1 < 3

4
∑

αd=0

log(2 log d1)

φ(d1)

(

1 + 1 +
1

2
+

1

4
+

1

8

)

<
8.7 log(2 log d1)

φ(d1)
.

Inserting inequalities (20) and (22) into (11), we get that

(23) log

(

5k

3.6

)

<
∑

d1|m
d1>1
d1 odd

8.7 log(2 log d1)

φ(d1)
.

The function

a 7→ 8.7 log(2 log a)

is sub–multiplicative when restricted to the set A = {a ≥ 17}. That is, the
inequality

8.7 log(2 log(ab)) ≤ 8.7 log(2 log a) · 8.7 log(2 log b) holds if min{a, b} ≥ 17.

Indeed, to see why this is true, assume say that a ≤ b. Then log ab ≤ 2 log b,
so it is enough to show that

8.7 log 2 + 8.7 log(2 log b) ≤ 8.7 log(2 log a) · 8.7 log(2 log b)

which is equivalent to

8.7 log(2 log b) (8.7 log(2 log a)− 1) > 8.7 log 2,

which is clear for min{a, b} ≥ 17. It thus follows that

∑

d1|m
d1>1
d1 odd

8.7 log(2 log d1)

φ(d1)
<

∏

q|m



1 +
∑

i≥1

8.7 log(2 log qi)

φ(qi)



− 1.
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Inserting the above inequality into (23), taking logarithms and using the fact
that log(1 + x) < x for all real numbers x, we get

(24) log

(

log

(

5ke

3.6

))

<
∑

q|m

∑

i≥1

8.7 log(2 log qi)

φ(qi)
.

Next we show that

(25)
∑

i≥1

8.7 log(2 log(qi))

φ(qi)
<

20 log log q

q
for q ∈ Q.

We check that it holds for q = 17. So, from now on, q ≥ 41. Since

log(2 log qi) = log(2i) + log log q < (1 + log i) + log log q ≤ i+ log log q,

we have that
∞
∑

i=1

log(2 log(qi))

φ(qi)
<

∑

i≥1

i

qi−1(q − 1)
+ log log q

∑

i≥1

1

qi−1(q − 1)

=
q2

(q − 1)3
+ (log log q)

(

q

(q − 1)2

)

< (log log q)

(

q2

(q − 1)3
+

q

(q − 1)2

)

= (log log q)

(

2q2 − q

(q − 1)3

)

because log log q > 1. Thus, it suffices that

8.7

(

2q2 − q

(q − 1)3

)

<
20

q
, which holds for q ≥ 41.

Hence, (25) holds, therefore (24) implies

(26) log

(

log

(

5ke

3.6

))

< 20
∑

q|m
q>2

log log q

q
,

which is exactly (6). This finishes the proof of the lemma. �

Lemma 5. If q < 104 and q | m, then q | n.

Proof. This is clear for q = 2, since then 24 | 52 − 1 | 5m − 1, therefore
8 = φ(24) | φ(5m − 1) = 5n − 1, so n is even. Let now q be odd. Look at the
number

(27)
5q − 1

4
= r

β1

1 · · · rβl

l .

Assume that l ≥ 2. Since ri ≡ 1 (mod q) for i = 1, . . . , l, we have that
q2 | (r1 − 1) · · · (rl − 1) | φ(5m − 1) = 5n − 1. Since q‖5q−1 − 1 for all odd
q < 104, we get that, q | n, as desired. So, it remains to show that l ≥ 2 in
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(27). We do this by contradiction. Suppose that l = 1. Since r1 ≡ 4 (mod 5),
reducing equation (27) modulo 5 we get that

1 ≡ 4β1 (mod 5),

so β1 is even. Hence,
5n − 1

5− 1
= �.

However, the equation
xn − 1

x− 1
= �

for integers x > 1 and n > 2 has been solved by Ljunggren [5] who showed that
the only possibilities are (x, n) = (3, 5), (7, 4). This contradiction shows that
l ≥ 2 and finishes the proof of this lemma. �

Remark. Apart from Ljunggren’s result, the above proof was based on the
computational fact that if q < 104 is an odd prime, then q‖5q−1 − 1. In fact,
the first prime failing this test is q = 20771.

Lemma 6. We have k = 2.

Proof. We split the odd prime factors p of m in two subsets

U = {q | n} and V = {q ∤ n}.

By Lemma 4, we have

(28) log

(

log

(

5ke

3.6

))

≤ 20





∑

q∈U

log log q

q
+

∑

p∈V

log log q

q



 := 20(T1 + T2).

We first bound T2. By Lemma 5, if q ∈ V , then q > 104. In particular,
q > 512. Let t ≥ 9, and put It = [2t, 2t+1) ∩ V . Suppose that r1, . . . , ru are
all the members of It. By the Primitive Divisor Theorem (see [2]), 5dru − 1
has a primitive prime factor for all divisors d of r1 · · · ru−1, and this prime is
congruent to 1 modulo ru. Since the number r1 · · · ru−1 has 2u−1 divisors, we
get that

2u−1 ≤ ordru(φ(5
m − 1)) = ordru(5

n − 1).

Since ru ∤ n, we get that ordru(5
n − 1) = ordru(5

ru−1 − 1), so

2u−1 ≤ ordru(5
ru−1 − 1) <

log 5ru

log ru
=

ru log 5

log ru
<

2t+1 log 5

(t+ 1) log 2
.

The above inequality implies that u ≤ t − 1, for if not, then u ≥ t, and we
would get that

2t−1 ≤
2t+1 log 5

(t+ 1) log 2
, or 4 log 5 ≥ (t+ 1) log 2 ≥ 10 log 2,
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a contradiction. This shows that #It ≤ t− 1 for all t ≥ 9. Hence,

20T2 ≤
∑

t≥9

20(t− 1) log log 2t

2t
< 1.4.

Hence, we get that

(29) log

(

log

(

5ke

3.6

))

< 20
∑

q|gcd(m,k)
q>2

log log q

q
+ 1.4.

We use (29) to bound k by better and better bounds. We start with

log

(

log

(

5ke

3.6

))

< 20(log log k)









∑

q|k
q>2

1

q









+ 1.4,

which is implied by (29). Assume k ≥ 3. We have

∑

q|k

1

q
<

∑

d|k

1

d
=

σ(k)

k
<

k

φ(k)
< 1.79 log log k +

2.5

log log k
,

where the last inequality above holds for all k ≥ 3 (see inequality (3.41) in
[13]). We thus get that

log k < log(k log 5 + 1− log(3.6)) < 20× 1.79(log log k)2 + 51.4,

which gives log k < 2163. Since
∑

17≤q≤2243

log q > 2166 > log k,

it follows that

T1 =
∑

q|gcd(m,k)
q>2

log log q

q
<

∑

17≤q≤2243

log log q

q
< 1.48.

Hence,

log

(

log

(

5ke

3.6

))

< 20× 1.48 + 1.4; so k < 2× 1013.

By (4), the first few possible odd prime factors of m are 17, 41, 71, 103, 223,
257 and all others are > 512. Since

17× 41× 71× 103× 223× 257× 512 > 1014 > k,

it follows that

T1 ≤
log log 17

17
+

log log 41

41
+

log log 71

71
+

log log 103

103
+

log log 223

223

+
log log 257

257
< 0.143.
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Hence,

log

(

log

(

5ke

3.6

))

< 20× 0.143 + 1.4; so k ≤ 44.

If follows that gcd(k,m) can have at most one odd prime factor, so

T1 ≤
log log 17

17
< 0.07,

therefore

log

(

log

(

5ke

3.6

))

< 20× 0.07 + 1.4 = 2.8; so k ≤ 11.

Thus, in fact k has no odd prime factor, giving that T1 = 0, so

log

(

log

(

5ke

3.6

))

< 1.4, therefore k ≤ 2.

Since by Lemma 2, m and n are not coprime, it follows that in fact k ≥ 2, so
k = 2. �

Lemma 7. k > 2.

Proof. Let q1 be the smallest odd prime factor of m which exists for if not
m | 16, which is not possible. Let q1, . . . , qs be all the prime factors of m. For
each divisor d of q2 · · · qs−1, the number 5dq1 − 1 has a primitive divisor which
is congruent to 1 modulo q1. Since there are 2s−1 divisors of q2 · · · qs, we get
that

2s−1 ≤ ordq1(φ(5
m − 1)) = 5n − 1.

Since q1 does not divide n (otherwise it would divide k = 2), we get that
ordq1(5

n − 1) = ordq1(5
q1−1 − 1), and

2s−1 ≤ ordq1
(

5q1−1 − 1
)

<
log 5q1

log q1
=

q1 log 5

log q1
< q1.

Hence,

s < 1 +
log q1
log 2

.

Lemma 4 now shows that

log

(

log

(

52e

3.6

))

< 20
∑

q|m
q>2

log log q

q
<

20s log log q1
q1

< 20

(

1 +
log q1
log 2

)

log log q1
q1

.

This gives q1 < 300, so by Lemma 5, we have q1 | k, which finishes the proof
of this lemma. �
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Obviously, Lemmas 6 and 7 contradict each other, which completes the proof
of the theorem.
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