DOI QR코드

DOI QR Code

ON POLARS OF MIXED COMPLEX PROJECTION BODIES

  • Liu, Lijuan (Department of Mathematics Shanghai University) ;
  • Wang, Wei (School of Mathematics and Computational Science Hunan University of Science and Technology) ;
  • Huang, Qingzhong (College of mathematics Physics and Information Engineering Jiaxing University)
  • Received : 2013.10.26
  • Published : 2015.03.31

Abstract

In this paper we establish general Minkowski inequality, Aleksandrov-Fenchel inequality and Brunn-Minkowski inequality for polars of mixed complex projection bodies.

Keywords

References

  1. J. Abardia, Difference bodies in complex vector spaces, J. Funct. Anal. 263 (2012), no. 11, 3588-3603. https://doi.org/10.1016/j.jfa.2012.09.002
  2. J. Abardia and A. Bernig, Projection bodies in complex vector spaces, Adv. Math. 211 (2011), no. 2, 830-846.
  3. E. D. Bolker, A class of convex bodies, Trans. Amer. Math. Soc. 145 (1969), 323-345. https://doi.org/10.1090/S0002-9947-1969-0256265-X
  4. T. Bonnesen and W. Fenchel, Theorie der konvexen Korper, Springer-Verlag, Berlin, 1934.
  5. J. Bourgain and J. Lindenstrauss, Projection bodies, Geometric aspects of functional analysis (1986/87), 250-270, Lecture Notes in Math., 1317, Springer, Berlin, 1988.
  6. W. Fenchel and B. Jessen, Mengenfunktionen und konvexe Korper, Det. Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 16 (1938), no. 3, 1-31.
  7. R. J. Gardner, Geometric Tomography, Second ed., Cambridge Univ. Press, New York, 2006.
  8. C. Haberl, Minkowski valuations intertwining with the special linear group, J. Eur. Math. Soc. 14 (2012), no. 5, 1565-1597. https://doi.org/10.4171/JEMS/341
  9. Q. Z. Huang, B. W. He, and G. T. Wang, The Busemann theorem for complex p-convex bodies, Arch. Math. 99 (2012), no. 3, 289-299. https://doi.org/10.1007/s00013-012-0422-y
  10. A. Koldobsky, Fourier Analysis in Convex Geometry, Math. Surveys Monogr., vol. 116, Amer. Math. Soc., 2005.
  11. A. Koldobsky, H. Konig, and M. Zymonopoulou, The complex Busemann-Petty problem on sections of convex bodies, Adv. Math. 218 (2008), no. 2, 352-367. https://doi.org/10.1016/j.aim.2007.12.006
  12. A. Koldobsky, G. Paouris, and M. Zymonopoulou, Complex intersection bodies, J. Lond. Math. Soc. 88 (2013), no. 2, 538-562. https://doi.org/10.1112/jlms/jdt014
  13. A. Koldobsky and M. Zymonopoulou, Extremal sections of complex $l_p-ball$, $0, Studia Math. 159 (2003), no. 2, 185-194. https://doi.org/10.4064/sm159-2-2
  14. G. S. Leng, C. J. Zhao, B.W. He, and X. Y. Li, Inequalities for polars of mixed projection bodies, Sci. China Ser. A 47 (2004), no. 2, 175-186. https://doi.org/10.1360/03yc0076
  15. M. Ludwig, Projection bodies and valuations, Adv. Math. 172 (2002), no. 2, 158-168. https://doi.org/10.1016/S0001-8708(02)00021-X
  16. M. Ludwig, Minkowski areas and valuations, J. Differential Geom. 86 (2010), no. 1, 133-161.
  17. E. Lutwak, Mixed projection inequalities, Trans. Amer. Math. Soc. 287 (1985), 91-105. https://doi.org/10.1090/S0002-9947-1985-0766208-7
  18. E. Lutwak, Inequalities for mixed projection bodies, Trans. Amer. Math. Soc. 339 (1993), 901-916. https://doi.org/10.1090/S0002-9947-1993-1124171-8
  19. E. Lutwak, The Brunn-Minkowski-Firey theory I: Mixed volumes and the Minkowski prob-lem, J. Differential Geom. 38 (1993), 131-150.
  20. E. Lutwak, Selected affine isoperimetric inequalities, Handbook of convex geometry, Vol. A, B, 151-176, North-Holland, Amsterdam, 1993.
  21. E. Lutwak, The Brunn-Minkowski-Firey theory II: Affine and geominimal surface areas, Adv. Math. 118 (1996), no. 2, 244-294. https://doi.org/10.1006/aima.1996.0022
  22. C. M. Petty, Projection bodies, Proc. Colloquium on Convexity (Copenhagen, 1965), pp. 234-241, Kobenhavns Univ. Mat. Inst., Copenhagen, 1967.
  23. C. M. Petty, Isoperimetric problems, Proceedings of the Conference on Convexity and Combinatorial Geometry (Univ. Oklahoma, Norman, Okla., 1971), pp. 26-41. Dept. Math., Univ. Oklahoma, Norman, Okla., 1971.
  24. B. Rubin, Comparison of volumes of convex bodies in real, complex, and quaternionic spaces, Adv. Math. 225 (2010), no. 3, 1461-1498. https://doi.org/10.1016/j.aim.2010.04.005
  25. R. Schneider, Zu einem Problem von Shephard uber die Projektionen konvexer Korpor, Math. Z. 101 (1967), 71-82. https://doi.org/10.1007/BF01135693
  26. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, Cambridge, 1993.
  27. F. E. Schuster, Volume inequalities and additive maps of convex bodies, Mathematika 53 (2006), no. 2, 211-234. https://doi.org/10.1112/S0025579300000103
  28. F. E. Schuster, Convolutions and multiplier transformations of convex bodies, Trans. Amer. Math. Soc. 359 (2007), no. 11, 5567-5591. https://doi.org/10.1090/S0002-9947-07-04270-5
  29. F. E. Schuster and T. Wannerer, GL(n) contravariant Minkowski valuations, Trans. Amer. Math. Soc. 364 (2012), no. 2, 815-826. https://doi.org/10.1090/S0002-9947-2011-05364-X
  30. W. Wang and R. G. He, Inequalities for mixed complex projection bodies, Taiwanese J. Math. 17 (2013), no. 6, 1887-1899.
  31. G. Zhang, Centered bodies and dual mixed volumes, Trans. Amer. Math. Soc. 345 (1994), no. 2, 777-801. https://doi.org/10.1090/S0002-9947-1994-1254193-9
  32. C. J. Zhao, $L_p$-dual Quermassintegral sums, Sci. China Ser. A 50 (2007), no. 9, 1347-1360. https://doi.org/10.1007/s11425-007-0117-1
  33. C. J. Zhao, On radial and polar Blaschke-Minkowski homomorphisms, Proc. Amer. Math. Soc. 141 (2013), no. 2, 667-676. https://doi.org/10.1090/S0002-9939-2012-11318-8
  34. C. J. Zhao, Volume differences of mixed complex projection bodies, Bull. Belgian Math. Soc. 21 (2014), no. 3, 553-564.
  35. C. J. Zhao and G. S. Leng, On polars of mixed projection bodies, J. Math. Anal. Appl. 316 (2006), no. 2, 664-678. https://doi.org/10.1016/j.jmaa.2005.04.073
  36. M. Zymonopoulou, The complex Busemann-Petty problem for arbitrary measures, Arch. Math. (Basel) 91 (2008), no. 5, 436-449. https://doi.org/10.1007/s00013-008-2863-x
  37. M. Zymonopoulou, The modified complex Busemann-Petty problem on sections of convex bodies, Positivity 13 (2009), no. 4, 717-733. https://doi.org/10.1007/s11117-008-2261-4