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ON POLARS OF MIXED COMPLEX PROJECTION BODIES

Lijuan Liu, Wei Wang, and Qingzhong Huang

Abstract. In this paper we establish general Minkowski inequality,
Aleksandrov-Fenchel inequality and Brunn-Minkowski inequality for po-
lars of mixed complex projection bodies.

1. Introduction

The projection body of a convex body in Rn is one of the central notions
that Minkowski introduced within convex geometry. Projection bodies and
their polars have received considerable attention over the past few decades
(see [3, 5, 7, 8, 10, 14, 15, 16, 22, 25, 26, 29, 32, 33, 34, 35]). Important
volume inequalities for the polars of projection bodies are the Petty projection
inequality [23] and the Zhang projection inequality [31]: Among bodies of given
volume the polar projection bodies have maximal volume precisely for ellipsoids
and minimal volume precisely for simplices. The corresponding results for
the volume of the projection body itself are major open problems in convex
geometry (see [20]).

Mixed projection bodies in Rn were introduced in the classic volume of
Bonnesen-Fenchel [4]. They are related to ordinary projection bodies in the
same way that mixed volumes are related to ordinary volumes. In [17] and [18]
Lutwak considered the volume of mixed projection bodies and their polars and
established analogs of the classical mixed volume inequalities. More inequalities
for polars mixed projection bodies were obtained by Leng et al. [14].

The theory of real convex bodies goes back to ancient times and continues
to be a very active field now. Until recently the situation with complex convex
bodies began to attract attention (see [1, 2, 9, 11, 12, 13, 24, 34, 36, 37]).

The real vector space Rn of real dimension n is replaced by a complex vector
space Cn of dimension n. We denote by ‖ · ‖K the norm corresponding to the
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complex convex body K ∈ Cn:

(1.1) K = {z ∈ C
n : ‖z‖K ≤ 1}.

In order to define volume, we identify Cn with R2n using the standard mapping

(1.2) ξ = (ξ1, . . . , ξn) = (ξ11 + iξ12, . . . , ξn1 + iξn2) 7→ (ξ11, ξ12, . . . , ξn1, ξn2).

The unit ball B in C
n is given by

B = {ξ ∈ C
n :

n
∑

i=1

(ξ2i1 + ξ2i2) ≤ 1}.

The volume of the unit ball B in Cn is denoted by ω2n.
Let K1, . . . ,K2n−1 be convex bodies in C

n and C ⊂ C be a convex subset.
The mixed complex projection body ΠC(K1, . . . ,K2n−1) is the convex body
whose support function is defined by (see [2])

(1.3) h(ΠC(K1, . . . ,K2n−1), w) =
1

2n

∫

S2n−1

h(C · w, ξ)dS(K1, . . . ,K2n−1, ξ),

where C · w := {cw | c ∈ C} and w ∈ Cn.

If C = {c}(c ∈ C) is just a point, then ΠC(K1, . . . ,K2n−1) = {0}. Indeed,
for every w ∈ Cn,

h(ΠC(K1, . . . ,K2n−1), w) =
1

2n

∫

S2n−1

h(cw, ξ)dS(K1, . . . ,K2n−1, ξ)

=
1

2n

∫

S2n−1

cw · ξdS(K1, . . . ,K2n−1, ξ)

=
1

2n
cw ·

∫

S2n−1

ξdS(K1, . . . ,K2n−1, ξ)

= 0,

since the centroid of the mixed surface area measure is the origin (see [6]).
Thus, ΠC(K1, . . . ,K2n−1) = {0}. Throughout this article, we assume that C

is not a point.
If K1 = · · · = K2n−i−1 = K and M = (K2n−i, . . . ,K2n−1), then the mixed

projection body ΠC(K, . . . ,K,K2n−i, . . . ,K2n−1) is written as ΠC
i (K,M). In

particular, we write ΠC
i (K,L) for the mixed complex projection body

ΠC(K, . . . ,K, L, . . . , L) with i copies of L and 2n − i − 1 copies of K. For
the mixed complex projection body ΠC

i (K,B), we simply write ΠC
i K. The

mixed complex projection body ΠC
0 K is written as ΠCK.

Recently, Abardia and Bernig [2] established the general Minkowski inequal-
ity, Aleksandrov-Fenchel inequality and Brunn-Minkowski inequality for mixed
complex projection bodies. The results can be stated as follows.

Theorem A ([2]). If K and L are convex bodies in C
n and C ⊂ C is a convex

subset, then

V (ΠC
1 (K,L))2n−1 ≥ V (ΠCK)2n−2V (ΠCL),

with equality if and only if K and L are homothetic.
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Theorem B ([2]). If K1, . . . ,K2n−1 are convex bodies in Cn and C ⊂ C is a

convex subset, while 2 ≤ k ≤ 2n− 2, then

V (ΠC(K1, . . . ,K2n−1))
k ≥

k
∏

j=1

V (ΠC(Kj , . . . ,Kj
︸ ︷︷ ︸

k

,Kk+1, . . . ,K2n−1).

Theorem C ([2]). If K and L are convex bodies in Cn and C ⊂ C is a convex

subset, then

V (ΠC(K + L))
1

2n(2n−1) ≥ V (ΠCK)
1

2n(2n−1) + V (ΠCL)
1

2n(2n−1) ,

with equality if and only if K and L are homothetic.

The main purpose of this article is to establish polar forms of the above
three inequalities.

Theorem 1.1. If K and L are convex bodies in Cn and C ⊂ C is an origin

symmetric convex subset, then

(1.4) V (ΠC∗

1 (K,L))2n−1 ≤ V (ΠC∗K)2n−2V (ΠC∗L),

with equality if and only if K and L are homothetic.

Theorem 1.2. If K1, . . . ,K2n−1 are convex bodies in Cn and C ⊂ C is an

origin symmetric convex subset, while 2 ≤ k ≤ 2n− 2, then

(1.5) V (ΠC∗(K1, . . . ,K2n−1))
k ≤

k
∏

j=1

V (ΠC∗(Kj, . . . ,Kj
︸ ︷︷ ︸

k

,Kk+1, . . . ,K2n−1).

Theorem 1.3. If K and L are convex bodies in Cn and C ⊂ C is an origin

symmetric convex subset, then

(1.6) V (ΠC∗(K + L))−
1

2n(2n−1) ≥ V (ΠC∗K)−
1

2n(2n−1) + V (ΠC∗L)−
1

2n(2n−1) ,

with equality if and only if K and L are homothetic.

Please see the next section for the above interrelated notations, definitions
and their background materials.

2. Notations and background material

In this section some notations and basic facts about convex bodies are pre-
sented. For general references the reader may wish to consult the books of
Gardner [7] and Schneider [26].

For x, y ∈ Rn, we denote their scalar product by x·y. Similarly, for x, y ∈ Cn,
we denote their complex scalar product by x · y. Let Kn denote the space of
non-empty compact convex bodies in real vector space Rn with the Hausdorff
topology. A compact, convex set K ∈ Kn is uniquely determined by its support
function h(K, ·) on the unit sphere Sn−1, defined by

(2.1) h(K,u) = max{x · u : x ∈ K}, u ∈ Sn−1,
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where x · u denotes the scalar product x and u.
A compact set K ∈ Rn is called a star body if the origin is an interior point

of K, every straight line passing through the origin crosses the boundary of the
set at exactly two points, and its radial function ρ(K, ·) defined by

(2.2) ρ(K,u) = max{λ : λu ∈ K}, u ∈ Sn−1

is positive and continuous on Sn−1. Let Sn denote the space of the star bodies
in real vector space Rn.

We recall that the polar coordinate formula for volume in Rn is

(2.3) V (K) =
1

n

∫

Sn−1

ρ(K,u)ndS(u),

where dS(u) denotes the spherical Lebesgue measure on Sn−1.
If K is a convex body that contains the origin in its interior, the polar body

of K, K∗, is defined by

K∗ := {x ∈ R
n : x · y ≤ 1 for all y ∈ K}.

From the definition of support function, for every convex body K that contains
the origin in its interior and λ > 0, it follows that

(2.4) (K∗)∗ = K and (λK)∗ =
1

λ
K∗.

In particular, if K is a convex body that contains the origin in its interior, then

(2.5) h(K∗, u) =
1

ρ(K,u)
and ρ(K∗, u) =

1

h(K,u)
, u ∈ Sn−1.

For K1,K2 ∈ Kn and λ1, λ2 ≥ 0, the Minkowski addition λ1K1 + λ2K2 is
the convex body defined by

h(λ1K1 + λ2K2, ·) = λ1h(K1, ·) + λ2h(K2, ·).

If Ki ∈ Kn(i = 1, 2, . . . , k) and λi(i = 1, 2, . . . , k) are nonnegative real
numbers, then the volume of λ1K1 + · · ·+ λkKk is a homogeneous polynomial
of degree n in λi given by

V (λ1K1 + · · ·+ λkKk) =
∑

i1,...,in

V (Ki1 , . . . ,Kin)λi1 · · ·λin ,

where the sum is taken over all n-tuples (i1, . . . , in) of positive integers not
exceeding m. The coefficient V (Ki1 , . . . ,Kin) is called the mixed volume of
Ki1 , . . . ,Kin . And it is nonnegative, symmetric in its arguments and monotone
(with respect to set inclusion in each component). In particular, V (K, . . . ,K) =
V (K). Let K1 = · · · = Kn−i = K and Kn−i+1 = · · · = Kn = L, the mixed
volume V (K1, . . . ,Kn) is usually written as Vi(K,L). If L = B, Vi(K,B) is
the i-th Quermassintegral of K and is written as Wi(K). For 0 ≤ i ≤ n − 1,
we write Wi(K,L) for the mixed volume V (K, . . . ,K

︸ ︷︷ ︸

n−i−1

, B, . . . , B
︸ ︷︷ ︸

i

, L).
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The mixed volume V (K1, . . . ,Kn) has the following integral representation:

(2.6) V (K1, . . . ,Kn) =
1

n

∫

Sn−1

h(Kn, u)dS(K1, . . . ,Kn−1, u),

where S(K1, . . . ,Kn−1, ·) denotes the mixed surface area measure.
One of the most general and fundamental inequalities for mixed volumes is

the Aleksandrov-Fenchel inequality: If K1, . . . ,Kn ∈ Kn and 1 ≤ k ≤ n, then

(2.7) V (K1, . . . ,Kn)
k ≥

k
∏

j=1

V (Kj, . . . ,Kj
︸ ︷︷ ︸

k

,Kk+1, . . . ,Kn).

Unfortunately, the equality conditions of this inequality are, in general, un-
known.

An important special case of inequality (2.7), where the equality conditions
are known, is the classical inequality between the quermassintegrals (see [18]):
If K ∈ Kn, and 0 ≤ i < j < n, then

(2.8) ωj−i
n Wi(K)n−j ≤ Wj(K)n−i,

with equality if and only if K is a ball.
The Minkowski inequality for mixed volumes states as follows (see [19]): If

K,L ∈ Kn and 0 ≤ i ≤ n− 2, then

(2.9) Wi(K,L)n−i ≥ Wi(K)n−i−1Wi(L),

with equality if and only if K and L are homothetic.
A consequence of the Minkowski inequality is the following Brunn-Minkowski

inequality: If K,L ∈ Kn and 0 ≤ i ≤ n− 2, then

(2.10) Wi(K + L)
1

n−i ≥ Wi(K)
1

n−i +Wi(L)
1

n−i ,

with equality if and only if K and L are homothetic.
A generalization of inequality (2.10) is also known (but without equality

conditions): If K,L,K1, . . . ,Ki ∈ Kn, 0 ≤ i ≤ n − 2, and M = (K1, . . . ,Ki),
then

(2.11) Vi(K + L,M)
1

n−i ≥ Vi(K,M)
1

n−i + Vi(L,M)
1

n−i .

The dual mixed volume ˜V−1(K,L) of K,L ∈ Sn was defined by (see [21])

(2.12) ˜V−1(K,L) =
1

n

∫

Sn−1

ρ(K,u)n+1ρ(L, u)−1dS(u).

It is easy to check that

(2.13) ˜V−1(K,K) = V (K).

The following Minkowski inequality for dual mixed volume ˜V−1(K,L) will
play an important role in our proof (see [21]). If K,L ∈ Sn, then

(2.14) ˜V−1(K,L)n ≥ V (K)n+1V (L)−1,

with equality if and only if K and L are dilates.
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Let K1, . . . ,K2n−1 be convex bodies in Cn. If C is an origin symmetric con-
vex subset in C, then the mixed complex projection body ΠC(K1, . . . ,K2n−1)
is origin symmetric. Note that origin symmetric complex convex bodies in Cn

correspond to those origin symmetric convex bodies K in R
2n that are invari-

ant with respect to any coordinate-wise two-dimensional rotation, namely for
each θ ∈ [0, 2π] and each ξ = (ξ11, ξ12, . . . , ξn1, ξn2) ∈ R2n,

‖ξ‖K = ‖Rθ(ξ11, ξ12), . . . , Rθ(ξn1, ξn2)‖K ,

where Rθ stands for the counterclockwise rotation of R2 by the angle θ with
respect to the origin.

We use ΠC∗(K1, . . . ,K2n−1) to denote the polar body of ΠC(K1, . . . ,K2n−1),
and call it a polar of mixed complex projection body Ki(i = 1, . . . , 2n−1). We
will simply write ΠC∗

i K and ΠC∗

i (K,L) rather than (ΠC
i K)∗ and (ΠC

i (K,L))∗,
respectively.

Let C(Sn−1) be the spaces of continuous functions on Sn−1 with uniform
topology and letM(Sn−1) denote the dual space of signed finite Borel measures
with weak∗ topology. The convolution µ ∗ f ∈ C(Sn−1) of a measure µ ∈
M(Sn−1) and a function f ∈ C(Sn−1) is defined by:

(2.15) (µ ∗ f)(u) =

∫

Sn−1

f(u·)dµ(·).

The canonical pairing of f ∈ C(Sn−1) and µ ∈ M(Sn−1) is defined by:

(2.16) 〈µ, f〉 = 〈f, µ〉 =

∫

Sn−1

f(u)dµ(u).

The following property of spherical convolution will be very useful (see [28]):
If µ, ν ∈ M(Sn−1) and f ∈ C(Sn−1), then

(2.17) 〈µ ∗ ν, f〉 = 〈µ, f ∗ ν〉.

3. Main results

Lemma 3.1 ([2]). If K1, . . . ,K2n−1, L1, . . . , L2n−1 are convex bodies in Cn

and C ⊂ C is a convex subset, then

V (K1, . . . ,K2n−1,Π
C(L1, . . . , L2n−1))

= V (L1, . . . , L2n−1,Π
C(K1, . . . ,K2n−1)),

where C is the complex conjugate of C.

Note that h(C · w, ξ) = h(C · ξ, w) and the surface area measure S(B, ·) is
constant in S2n−1, we have the following lemma.

Lemma 3.2 ([30]). If C ⊂ C is a convex subset, then

ΠC(B, . . . , B) = ΠC(B, . . . , B) = rCB,

where rC is a constant which depends only on C.
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Combine the special case K1 = · · · = K2n−1 = B of Lemmas 3.1 and 3.2 to
get:

Lemma 3.3. If L1, . . . , L2n−1 are convex bodies in Cn and C ⊂ C is a convex

subset, then

(3.1) W2n−1(Π
C(L1, . . . , L2n−1)) = rCV (L1, . . . , L2n−1, B).

For L1 = · · · = L2n−2 = K and L2n−1 = L, identity (3.1) becomes

(3.2) W2n−1(Π
C
1 (K,L)) = rCW1(K,L).

For L1 = · · · = L2n−i−1 = L and L2n−i = · · · = L2n−1 = B, identity (3.1)
becomes,

(3.3) W2n−1(Π
C
i L) = rCWi+1(L).

In [24], Schuster introduced the operator MΦ : Sn → Kn which was defined
by

h(MΦL, u) = ρn+1(L, ·) ∗ h(F, ·), u ∈ Sn−1.

Here h(F, ·) is the generating function of Φ, where F ∈ R
n is a figure of

revolution which is not a singleton and depends on u.
In particular, for the classical projection body operator Π : Kn → Kn, the

operator MΠ : Sn → Kn is defined by

h(MΠK,u) = ρn+1(K, ·) ∗ h([−
1

2
,
1

2
] · u, ·), u ∈ Sn−1,

where F = [− 1
2 ,

1
2 ] · u = [−u

2 ,
u
2 ].

This operator can be extended to complex case. Let L be a star body in Cn

and C be an origin symmetric convex set in C. Then the operator MΠC can
be defined by

(3.4) h(MΠCL, ξ) = ρ2n+1(L, ·) ∗ h(C · ξ, ·), ξ ∈ C
n,

where F = C · ξ.

Lemma 3.4. Let K1, . . . ,K2n−1 be convex bodies and L be a star body in C
n.

If C is an origin symmetric convex set in C, then

˜V−1(L,Π
C∗(K1, . . . ,K2n−1)) = V (K1, . . . ,K2n−1,MΠC

L).

Proof. By (2.12), (2.5), (1.3), (3.4), (2.17) and (2.6), we have

˜V−1(L,Π
C∗(K1, . . . ,K2n−1))

=
1

2n

∫

S2n−1

ρ(L, ξ)2n+1ρ(ΠC∗(K1, . . . ,K2n−1), ξ)
−1dξ

=
1

2n

∫

S2n−1

ρ(L, ξ)2n+1h(ΠC(K1, . . . ,K2n−1), ξ)dξ

=
1

(2n)2
〈ρ(L, ξ)2n+1, h(C · ξ, ·) ∗ S(K1, . . . ,K2n−1, ·)〉
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=
1

(2n)2
〈ρ(L, ·)2n+1 ∗ h(C · ω, ·), S(K1, . . . ,K2n−1, ω)〉

=
1

2n
〈h(MΠC

L, ω), S(K1, . . . ,K2n−1, ω)〉

=
1

2n

∫

S2n−1

h(MΠC
L, ω)dS(K1, . . . ,K2n−1, ω)

= V (K1, . . . ,K2n−1,MΠC
L). �

If K1 = · · · = K2n−i−1 = K and K2n−i = · · · = K2n−1 = B, then Lemma
3.4 reduces to:

Lemma 3.5. Let K be a convex body and L be a star body in C
n. If C is an

origin symmetric convex set in C, then

˜V−1(L,Π
C∗

i K) = Wi(K,MΠC
L).

Proof of Theorem 1.1. Suppose Q is a star body in Cn, from Lemma 3.4 and
the Aleksandrov-Fenchel inequality (2.7) and the Minkowski inequality (2.14),
it follows that

˜V−1(Q,ΠC∗

1 (K,L))2n−1

= V (K, . . . ,K, L,MΠC
Q)2n−1

≥ V1(K,MΠC
Q)2n−2V1(L,MΠC

Q)(3.5)

= ˜V−1(Q,ΠC∗K)2n−2
˜V−1(Q,ΠC∗L)

≥ V (Q)
(2n−1)(2n+1)

2n V (ΠC∗K)−
2n−2
2n V (ΠC∗L)−

1
2n .

By the equality conditions of (2.14), equality in (3.5) holds if and only if Q,
ΠC∗K, and ΠC∗L are dilates.

Set Q = ΠC∗

1 (K,L) and note that ˜V−1(Q,Q) = V (Q) to obtain the desired
inequality (1.4). If there is equality in (1.4), then there exist λ1, λ2 > 0 such
that

(3.6) ΠC∗

1 (K,L) = λ1Π
C∗K = λ2Π

C∗L.

From equality in (1.4), it follows that

(3.7) λ2n−2
1 λ2 = 1.

On the other hand, from the definition of the polar body, (3.6) is equivalent
to

(3.8) ΠC
1 (K,L) =

1

λ1
ΠCK =

1

λ2
ΠCL.

Moreover, (3.2), (3.3) and (3.8) imply

(3.9) λ1 =
W1(K)

W1(K,L)
and λ2 =

W1(L)

W1(K,L)
.
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Hence, by (3.7) and (3.9) we have

W1(K,L)2n−1 = W1(K)2n−2W1(L),

which implies, by (2.9), that K and L are homothetic. �

Remark 1. The real case of Theorem 1.1 was given by Zhao and Leng [35]. The
real case of Theorem 1.1 for the polar Blaschke-Minkowski homomorphisms was
given by Schuster [27].

Proof of Theorem 1.2. Suppose Q is a star body in Cn, from Lemma 3.4 and
the Aleksandrov-Fenchel inequality (2.7), we have that

˜V−1(Q,ΠC∗(K1, . . . ,K2n−1))
k

= V (K1, . . . ,K2n−1,MΠC
Q)k

≥
k
∏

j=1

V (Kj , . . . ,Kj
︸ ︷︷ ︸

k

,Kk+1, . . . ,K2n−1,MΠCQ)

=

k
∏

j=1

˜V−1(Q,ΠC∗(Kj , . . . ,Kj
︸ ︷︷ ︸

k

,Kk+1, . . . ,K2n−1)).

Write ΠC∗

k
′ (Kj, N) for the mixed operator ΠC∗(Kj , . . . ,Kj ,Kk+1, . . . ,K2n−1),

where k
′

= 2n− k − 1. Then by inequality (2.14), we have

˜V−1(Q,ΠC∗

k
′ (Kj, N))2n ≥ V (Q)2n+1V (ΠC∗

k
′ (Kj , N))−1.

Hence, we obtain
(3.10)

˜V−1(Q,ΠC∗(K1, . . . ,K2n−1))
2nk ≥ V (Q)(2n+1)k

k
∏

j=1

V (ΠC∗

k
′ (Kj , N))−1.

Setting Q = ΠC∗(K1, . . . ,K2n−1) in (3.10), it becomes the desired inequality.
�

Remark 2. The real case of Theorem 1.2 was given by Zhao and Leng [35]. The
real case of Theorem 1.2 for the polar Blaschke-Minkowski homomorphisms was
given by Schuster [27].

Combine the special case k = 2n − 2 of Theorem 1.2 and Theorem 1.1 to
obtain:

Corollary 3.6. If K1, . . . ,K2n−1 are convex bodies in C
n and C ⊂ C is an

origin symmetric convex subset in C, then

V (ΠC∗(K1, . . . ,K2n−1))
2n−1 ≤ V (ΠC∗K1) · · ·V (ΠC∗K2n−1),

with equality if and only if the Kj are homothetic.
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The special case K1 = · · · = K2n−j−1 = K and K2n−j = · · · = K2n−1 = L

of Corollary 3.6 leads to a generalization of Theorem 1.1:

Corollary 3.7. If K and L are convex bodies in Cn and C ⊂ C is an origin

symmetric convex subset in C, while 1 ≤ j ≤ 2n− 2, then

V (ΠC∗

j (K,L))2n−1 ≤ V (ΠC∗K)2n−j−1V (ΠC∗L)j ,

with equality if and only if K and L are homothetic.

An important consequence of Corollary 3.7 states as follows.

Theorem 3.8. Let K,L be convex bodies in Cn and M ⊂ Cn be a subset which

contains K and L. Suppose C ⊂ C is a convex subset and 1 ≤ j ≤ 2n− 2. If

either

(3.11) V (ΠC∗

j (K,Q)) = V (ΠC∗

j (L,Q)) for all Q ∈ M,

or

(3.12) V (ΠC∗

j (Q,K)) = V (ΠC∗

j (Q,L)) for all Q ∈ M,

hold, then it follows that K = L, up to translation.

Proof. Suppose (3.11) holds. Take K for Q in (3.11), use Corollary 3.7 to get

(3.13) V (ΠC∗K) ≤ V (ΠC∗L),

with equality if and only if K and L are homothetic.
Take L for Q in (3.11), use Corollary 3.7 to get

V (ΠC∗K) ≥ V (ΠC∗L).

Hence, there is equality in (3.13) and thus, there is a λ > 0 for which K

and λL are translates. Note that the complex projection body operator ΠC is
homogeneous of degree 2n− 1. But equality in (3.13) implies that λ = 1.

Exactly the same sort of argument shows that condition (3.12) implies that
K and L must be translates. �

Remark 3. The real case of Theorem 3.8 was given by Zhao and Leng [35].

In fact a considerably more general inequality of Brunn-Minkowski inequality
for polars of mixed complex projection bodies holds:

Theorem 3.9. If K and L are convex bodies in Cn and C ⊂ C is an origin

symmetric complex convex subset, while 0 ≤ j ≤ 2n− 2, then
(3.14)

V (ΠC∗

j (K + L))−
1

2n(2n−j−1) ≤ V (ΠC∗

j K)−
1

2n(2n−j−1) + V (ΠC∗

j L)−
1

2n(2n−j−1) ,

with equality if and only if K and L are homothetic.
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Proof. Suppose Q is a star body in Cn, from Lemma 3.5, (2.11) and (2.14), we
have

˜V−1(Q,ΠC∗

j (K + L))
1

2n−j−1

= Wj(K + L,MΠC
Q)

1
2n−j−1

≥ Wj(K,MΠC
Q)

1
2n−j−1 +Wj(L,MΠC

Q)
1

2n−j−1(3.15)

= ˜V−1(Q,ΠC∗

j K)
1

2n−j−1 + ˜V−1(Q,ΠC∗

j L)
1

2n−j−1

≥ V (Q)
2n+1

2n(2n−j−1) [V (ΠC∗

j K)−
1

2n(2n−j−1) + V (ΠC∗

j L)−
1

2n(2n−j−1) ].

By the equality conditions of (2.14), equality in (3.15) holds if and only if
Q,ΠC∗

j K and ΠC∗

j L are delates.

Set Q = ΠC∗

j (K+L) and note that ˜V−1(Q,Q) = V (Q) to obtain the desired

inequality (3.14). If there is equality in (3.14), then there exist λ1, λ2 > 0 such
that

(3.16) ΠC∗

j (K + L) = λ1Π
C∗

j K = λ2Π
C∗

j L.

From equality in (3.14), it follows that

(3.17) λ
1

2n−j−1

1 + λ
1

2n−j−1

2 = 1.

On the other hand, from the definition of polar body, (3.16) is equivalent to

(3.18) ΠC
j (K + L) =

1

λ1
ΠC

j K =
1

λ2
ΠC

j L.

Moreover, (3.3) and (3.18) imply

(3.19) λ1 =
Wj+1(K)

Wj+1(K,L)
and λ2 =

Wj+1(L)

Wj+1(K,L)
.

Hence, by (3.17) and (3.19) we have

Wj+1(K + L)
1

2n−j−1 = Wj+1(K)
1

2n−j−1 +Wj+1(L)
1

2n−j−1

which implies, by (2.10), that K and L are homothetic. �

Remark 4. The case j = 0 of Theorem 3.9 is just Theorem 1.3. The real case
of Theorem 1.3 was given by Schuster [27].
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