DOI QR코드

DOI QR Code

Temperature-responsive bioactive hydrogels based on a multifunctional recombinant elastin-like polymer

  • Santo, Vitor E. (G.I.R. Bioforge, Centro I+D, Campus Miguel Delibes, University of Valladolid) ;
  • Prieto, Susana (G.I.R. Bioforge, Centro I+D, Campus Miguel Delibes, University of Valladolid) ;
  • Testera, Ana M. (G.I.R. Bioforge, Centro I+D, Campus Miguel Delibes, University of Valladolid) ;
  • Arias, Francisco J. (G.I.R. Bioforge, Centro I+D, Campus Miguel Delibes, University of Valladolid) ;
  • Alonso, Matilde (G.I.R. Bioforge, Centro I+D, Campus Miguel Delibes, University of Valladolid) ;
  • Mano, Joao F. (3B's Research Group-Biomaterials, Biodegradables and Biomimetics, Dept. of Polymer Engineering, University of Minho) ;
  • Rodriguez-Cabello, Jose Carlos (G.I.R. Bioforge, Centro I+D, Campus Miguel Delibes, University of Valladolid)
  • Received : 2014.12.30
  • Accepted : 2015.02.20
  • Published : 2015.03.25

Abstract

A bioactive and multifunctional elastin-like polymer (ELP) was produced by genetic engineering techniques to develop new artificial matrices with the ability to mimic the extracellular matrix (ECM). The basic composition of this ELP is a thermo- and pH-sensitive elastin pentapeptide which has been enriched with RGD-containing domains, the RGD loop of fibronectin, for recognition by integrin receptors on their sequence to promote efficient cell attachment. Hydrogels of this RGD-containing polymer were obtained by crosslinking with hexamethylene diisocyanate, a lysine-targeted crosslinker. These materials retain the "smart" nature and temperature-responsive character, and the desired mechanical behavior of the elastin-like polymer family. The influence of the degree of crosslinking on the morphology and properties of the matrices were tested by calorimetric techniques and scanning electron microscopy (SEM). Their mechanical behavior was studied by dynamical mechanical analysis (DMA). These results show the potential of these materials in biomedical applications, especially in the development of smart systems for tissue engineering.

Keywords

References

  1. Anderson, D.G., Burdick, J.A. and Langer, R. (2004), "Smart biomaterials", Science, 305(5692), 1923-1924. https://doi.org/10.1126/science.1099987
  2. Antoni, G., Presentini, R. and Neri, P. (1983), "A simple method for the estimation of amino groups on insoluble matrix beads", Anal. biochem., 129(1), 60-63. https://doi.org/10.1016/0003-2697(83)90052-0
  3. Costa, R.R., Castro, E., Arias, F.J., Rodriguez-Cabello, J.C. and Mano, J.F. (2013), "Multifunctional compartmentalized capsules with a hierarchical organization from the nano to the macro scales", Biomacromolecules, 14(7), 2403-2410. https://doi.org/10.1021/bm400527y
  4. Costa, R.R., Custodio, C.A., Testera, A.M., Arias, F.J., Rodriguez-Cabello, J.C., Alves, N.M. and Mano, J.F. (2009), "Stimuli-responsive thin coatings using elastin-like polymers for biomedical applications", Adv. Function. Mater., 19(20), 3210-3218. https://doi.org/10.1002/adfm.200900568
  5. Diego, R.B., Estelles, J.M., Sanz, J.A., Garcia-Aznar, J.M. and Sanchez, M.S. (2007), "Polymer scaffolds with interconnected spherical pores and controlled architecture for tissue engineering: fabrication, mechanical properties, and finite element modeling", J. Biomed. Mater. Res. Part B: Appl. Biomater., 81(2), 448-455.
  6. Espirito Santo, V., Prieto, S., Testera, A.M., Alonso, M., Arias, F.J., Mano, J.F. and Rodriguez-Cabello, J.C. (2008), "Physical properties of an artificial extracellular matrix based on a crosslinked elastin-like polymer", Mater. Sci. Forum, 587, 47-51.
  7. Everaerts, F., Torrianni, M., Hendriks, M. and Feijen, J. (2007), "Quantification of carboxyl groups in carbodiimide cross-linked collagen sponges", J. Biomed. Mater. Res. Part A, 83(4), 1176-1183.
  8. Girotti, A., Reguera, J., Rodriguez-Cabello, J.C., Arias, F.J., Alonso, M. and Testera, A.M. (2004), "Design and bioproduction of a recombinant multi (bio) functional elastin-like protein polymer containing cell adhesion sequences for tissue engineering purposes", J. Mater. Sci.: Mater. Med., 15(4), 479-484. https://doi.org/10.1023/B:JMSM.0000021124.58688.7a
  9. Guda, C., Zhang, X., McPherson, D.T., Xu, J., Cherry, J.H., Urry, D.W. and Daniell, H. (1995), "Hyper expression of an environmentally friendly synthetic polymer gene", Biotech. Lett., 17(7), 745-750. https://doi.org/10.1007/BF00130362
  10. Heilshorn, S.C., Liu, J.C. and Tirrell, D.A. (2005), "Cell-binding domain context affects cell behavior on engineered proteins", Biomacromolecules, 6(1), 318-323. https://doi.org/10.1021/bm049627q
  11. Kinikoglu, B., Rodriguez-Cabello, J.C., Damour, O. and Hasirci, V. (2011), "A smart bilayer scaffold of elastin-like recombinamer and collagen for soft tissue engineering", J. Mater. Sci.: Mater. Med., 22(6), 1541-1554. https://doi.org/10.1007/s10856-011-4315-6
  12. Langer, R. and Tirrell, D.A. (2004), "Designing materials for biology and medicine", Nature, 428(6982), 487-492. https://doi.org/10.1038/nature02388
  13. Lee, J., Macosko, C.W. and Urry, D.W. (2001), "Elastomeric polypentapeptides cross-linked into matrixes and fibers", Biomacromolecules, 2(1), 170-179. https://doi.org/10.1021/bm0000900
  14. Lee, J., Macosko, C.W. and Urry, D.W. (2001), "Mechanical properties of cross-linked synthetic elastomeric polypentapeptides", Macromolecules, 34(17), 5968-5974. https://doi.org/10.1021/ma0017844
  15. Lee, J., Macosko, C.W. and Urry, D.W. (2001), "Swelling behavior of gamma-irradiation cross-linked elastomeric polypentapeptide-based hydrogels", Macromolecules, 12(34), 4114-4123.
  16. Lee, T.A.T., Cooper, A.A.R.P., Apkarian, R.P. and Conticello, V.P. (2000), "Thermo-reversible self-assembly of nanoparticles derived from elastin-mimetic polypeptides", Adv. Mater., 12(15), 1105-1110. https://doi.org/10.1002/1521-4095(200008)12:15<1105::AID-ADMA1105>3.0.CO;2-1
  17. Lee, T.T., Garcia, J.R., Paez, J.I., Singh, A., Phelps, E.A., Weis, S. and Garcia, A.J. (2014), "Light-triggered in vivo activation of adhesive peptides regulates cell adhesion, inflammation and vascularization of biomaterials", Nature Mater., 14, 352-360. https://doi.org/10.1038/nmat4157
  18. Liu, J.C., Heilshorn, S.C. and Tirrell, D.A. (2004), "Comparative cell response to artificial extracellular matrix proteins containing the RGD and CS5 cell-binding domains", Biomacromolecules, 5(2), 497-504. https://doi.org/10.1021/bm034340z
  19. Lutolf, M.P. and Hubbell, J.A. (2005), "Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering", Nat. Biotech., 23(1), 47-55. https://doi.org/10.1038/nbt1055
  20. Mano, J.F. (2008), "Stimuli-responsive polymeric systems for biomedical applications", Adv. Eng. Mater., 10(6), 515-527. https://doi.org/10.1002/adem.200700355
  21. Martin, L., Alonso, M., Moller, M., Rodriguez-Cabello, J.C. and Mela, P. (2009), "3D microstructuring of smart bioactive hydrogels based on recombinant elastin-like polymers", Soft Matt., 5(8), 1591-1593. https://doi.org/10.1039/b823488d
  22. Maskarinec, S.A. and Tirrell, D.A. (2005), "Protein engineering approaches to biomaterials design", Curr. Opin. Biotech., 16(4), 422-426. https://doi.org/10.1016/j.copbio.2005.06.009
  23. Mosiewicz, K.A., Kolb, L., van der Vlies, A.J., Martino, M.M., Lienemann, P.S., Hubbell, J.A. and Lutolf, M.P. (2013), "In situ cell manipulation through enzymatic hydrogel photopatterning", Nat. Mater., 12(11), 1072-1078. https://doi.org/10.1038/nmat3766
  24. Nicol, A., Gowda, D.C., Parker, T.M. and Urry, D.W. (1994), "Cell adhesive properties of bioelastic materials containing cell attachment sequences", Biotech. Bioact. Polymer., 95-113, Springer, US.
  25. Nilsson, J., Stahl, S., Lundeberg, J., Uhlen, M. and Nygren, P.A. (1997), "Affinity fusion strategies for detection, purification, and immobilization of recombinant proteins", Protein Expres. Purify., 11(1), 1-16. https://doi.org/10.1006/prep.1997.0767
  26. Nowag, S. and Haag, R. (2014), "pH-responsive micro-and nanocarrier systems", Angew. Chem. Int. Edit., 53(1), 49-51. https://doi.org/10.1002/anie.201308619
  27. Nowatzki, P.J. and Tirrell, D.A. (2004), "Physical properties of artificial extracellular matrix protein films prepared by isocyanate crosslinking", Biomater., 25(7), 1261-1267. https://doi.org/10.1016/S0142-9612(03)00635-5
  28. Ong, S.R., Trabbic-Carlson, K.A., Nettles, D.L., Lim, D.W., Chilkoti, A. and Setton, L.A. (2006), "Epitope tagging for tracking elastin-like polypeptides", Biomater., 27(9), 1930-1935. https://doi.org/10.1016/j.biomaterials.2005.10.018
  29. Popa, E.G., Caridade, S.G., Mano, J.F., Reis, R.L. and Gomes, M.E. (2013), "Chondrogenic potential of injectable $\kappa$-carrageenan hydrogel with encapsulated adipose stem cells for cartilage tissue-engineering applications", J. Tissue Eng. Regen. Med., doi: 10.1002/term.1683.
  30. Popa, E.G., Carvalho, P.P., Dias, A.F., Santos, T.C., Santo, V.E., Marques, A.P. and Reis, R.L. (2014), "Evaluation of the in vitro and in vivo biocompatibility of carrageenan-based hydrogels", J. Biomed. Mater. Res. Part A, 102(11), 4087-4097. https://doi.org/10.1002/jbm.a.35081
  31. Prieto, S., Shkilnyy, A., Rumplasch, C., Ribeiro, A., Arias, F.J., Rodriguez-Cabello, J.C. and Taubert, A. (2011), "Biomimetic calcium phosphate mineralization with multifunctional elastin-like recombinamers", Biomacromolecules, 12(5), 1480-1486. https://doi.org/10.1021/bm200287c
  32. Richman, G.P., Tirrell, D.A. and Asthagiri, A.R. (2005), "Quantitatively distinct requirements for signaling-competent cell spreading on engineered versus natural adhesion ligands", J. Control. Release, 101(1), 3-12. https://doi.org/10.1016/j.jconrel.2004.07.034
  33. Rodriguez-Cabello, J.C., Reguera, J., Girotti, A., Alonso, M. and Testera, A.M. (2005), "Developing functionality in elastin-like polymers by increasing their molecular complexity: the power of the genetic engineering approach", Pro. Polym. Sci., 30(11), 1119-1145. https://doi.org/10.1016/j.progpolymsci.2005.07.004
  34. Rodriguez-Cabello, J.C., Reguera, J., Girotti, A., Arias, F.J. and Alonso, M. (2006), "Genetic engineering of protein-based polymers: the example of elastinlike polymers", Adv. Polym. Sci., 200, 119-167.
  35. Sarangthem, V., Cho, E.A., Bae, S.M., Singh, T.D., Kim, S.J., Kim, S. and Park, R.W. (2013), "Construction and application of elastin like polypeptide containing IL-4 receptor targeting peptide", PloS one, 8(12), e81891. https://doi.org/10.1371/journal.pone.0081891
  36. Trabbic-Carlson, K., Setton, L.A. and Chilkoti, A. (2003), "Swelling and mechanical behaviors of chemically cross-linked hydrogels of elastin-like polypeptides", Biomacromolecules, 4(3), 572-580. https://doi.org/10.1021/bm025671z
  37. Urry, D.W. (1993), "Molecular machines-how motion and other functions of living organisms can result from reversible chemical-changes", Angewandte Chemi, 6(32), 819-841.
  38. Urry, D.W. (2006), What sustains life? Consilient mechanisms for protein-based machines and materials, Springer-Verlag, New York, USA.
  39. Urry, D.W., Nicol, A., Gowda, D.C., Hoban, L.D., McKee, A., Williams, T. and Cox, B.A. (1993), "Medical applications of bioelastic materials", Biotechnological polymers: medical, pharmaceutical and industrial applications, Technomic, Atlanta.
  40. Urry, D.W., Parker, T.M., Reid, M.C. and Gowda, D.C. (1991), "Biocompatibility of the Bioelastic Materials, Poly (GVGVP) and Its Gamma-Irradiation Cross-Linked Matrix-Summary of Generic Biological Test-Results", J. Bioact. Compat. Polym., 3(6), 263-282.
  41. Urry, D.W., Pattanaik, A., Xu, J., Cooper Woods, T., McPherson, D.T. and Parker, T.M. (1998), "Elastic protein-based polymers in soft tissue augmentation and generation", J. Biomater. Sci., Polym. Ed., 9(10), 1015-1048. https://doi.org/10.1163/156856298X00316
  42. Urry, D.W., Peng, S., Xu, J. and McPherson, D.T. (1997), "Characterization of waters of hydrophobic hydration by microwave dielectric relaxation", J. Am. Chem. Soc., 119(5), 1161-1162. https://doi.org/10.1021/ja962374r
  43. Welsh, E.R. and Tirrell, D.A. (2000), "Engineering the extracellular matrix: a novel approach to polymeric biomaterials. I. Control of the physical properties of artificial protein matrices designed to support adhesion of vascular endothelial cells", Biomacromolecules, 1(1), 23-30. https://doi.org/10.1021/bm0002914
  44. Wu, X., Sallach, R., Haller, C.A., Caves, J.A., Nagapudi, K., Conticello, V.P. and Chaikof, E.L. (2005), "Alterations in physical cross-linking modulate mechanical properties of two-phase protein polymer networks", Biomacromolecules, 6(6), 3037-3044. https://doi.org/10.1021/bm0503468
  45. Zhu, J. and Marchant, R.E. (2011), "Design properties of hydrogel tissue-engineering scaffolds", Expert Rev. Med. Dev., 5(8), 607-626.